Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mark N. Adams is active.

Publication


Featured researches published by Mark N. Adams.


Pharmacology & Therapeutics | 2011

Structure, function and pathophysiology of protease activated receptors.

Mark N. Adams; Mei-Kwan Yau; Jacky Y. Suen; David P. Fairlie; Morley D. Hollenberg; John D. Hooper

Discovered in the 1990s, protease activated receptors(1) (PARs) are membrane-spanning cell surface proteins that belong to the G protein coupled receptor (GPCR) family. A defining feature of these receptors is their irreversible activation by proteases; mainly serine. Proteolytic agonists remove the PAR extracellular amino terminal pro-domain to expose a new amino terminus, or tethered ligand, that binds intramolecularly to induce intracellular signal transduction via a number of molecular pathways that regulate a variety of cellular responses. By these mechanisms PARs function as cell surface sensors of extracellular and cell surface associated proteases, contributing extensively to regulation of homeostasis, as well as to dysfunctional responses required for progression of a number of diseases. This review examines common and distinguishing structural features of PARs, mechanisms of receptor activation, trafficking and signal termination, and discusses the physiological and pathological roles of these receptors and emerging approaches for modulating PAR-mediated signaling in disease.


Frontiers in Oncology | 2014

Chemotherapeutic Compounds Targeting the DNA Double-Strand Break Repair Pathways: The Good, the Bad, and the Promising

Christian Jekimovs; Emma Bolderson; Amila Suraweera; Mark N. Adams; Kenneth J. O’Byrne; Derek J. Richard

The repair of DNA double-strand breaks (DSBs) is a critical cellular mechanism that exists to ensure genomic stability. DNA DSBs are the most deleterious type of insult to a cell’s genetic material and can lead to genomic instability, apoptosis, or senescence. Incorrectly repaired DNA DSBs have the potential to produce chromosomal translocations and genomic instability, potentially leading to cancer. The prevalence of DNA DSBs in cancer due to unregulated growth and errors in repair opens up a potential therapeutic window in the treatment of cancers. The cellular response to DNA DSBs is comprised of two pathways to ensure DNA breaks are repaired: homologous recombination and non-homologous end joining. Identifying chemotherapeutic compounds targeting proteins involved in these DNA repair pathways has shown promise as a cancer therapy for patients, either as a monotherapy or in combination with genotoxic drugs. From the beginning, there have been a number of chemotherapeutic compounds that have yielded successful responses in the clinic, a number that have failed (CGK-733 and iniparib), and a number of promising targets for future studies identified. This review looks in detail at how the cell responds to these DNA DSBs and investigates the chemotherapeutic avenues that have been and are currently being explored to target this repair process.


Journal of Biological Chemistry | 2010

Proteolysis-induced N-terminal Ectodomain Shedding of the Integral Membrane Glycoprotein CUB Domain-containing Protein 1 (CDCP1) Is Accompanied by Tyrosine Phosphorylation of Its C-terminal Domain and Recruitment of Src and PKCδ

Yaowu He; Andreas Wortmann; Les J. Burke; Janet C. Reid; Mark N. Adams; Ibtissam Abdul-Jabbar; James P. Quigley; Richard Leduc; Daniel Kirchhofer; John D. Hooper

CUB-domain-containing protein 1 (CDCP1) is an integral membrane glycoprotein with potential as a marker and therapeutic target for a number of cancers. Here we examine mechanisms regulating cellular processing of CDCP1. By analyzing cell lines exclusively passaged non-enzymatically and through use of a panel of protease inhibitors, we demonstrate that full-length 135 kDa CDCP1 is post-translationally processed in a range of cell lines by a mechanism involving serine protease activity, generating a C-terminal 70-kDa fragment. Immunopurification and N-terminal sequencing of this cell-retained fragment and detailed mutagenesis, show that proteolytic processing of CDCP1 occurs at two sites, Arg-368 and Lys-369. We show that the serine protease matriptase is an efficient, but not essential, cellular processor of CDCP1 at Arg-368. Importantly, we also demonstrate that proteolysis induces tyrosine phosphorylation of 70-kDa CDCP1 and recruitment of Src and PKCδ to this fragment. In addition, Western blot and mass spectroscopy analyses show that an N-terminal 65-kDa CDCP1 ectodomain is shed intact from the cell surface. These data provide new insights into mechanisms regulating CDCP1 and suggest that the biological role of this protein and, potentially, its function in cancer, may be mediated by both 70-kDa cell retained and 65-kDa shed fragments, as well as the full-length 135-kDa protein.


BMC Molecular Biology | 2016

Nucleophosmin: from structure and function to disease development

Joseph K. Box; Nicolas Paquet; Mark N. Adams; Didier Boucher; Emma Bolderson; Kenneth J. O’Byrne; Derek J. Richard

Nucleophosmin (NPM1) is a critical cellular protein that has been implicated in a number of pathways including mRNA transport, chromatin remodeling, apoptosis and genome stability. NPM1 function is a critical requirement for normal cellular biology as is underlined in cancer where NPM1 is commonly overexpressed, mutated, rearranged and sporadically deleted. Consistent with a multifunctional role within the cell, NPM1 can function not only as a proto-oncogene but also as a tumor suppressor. The aim of this review is to look at the less well-described role of NPM1 in the DNA repair pathways as well as the role of NPM1 in the regulation of apoptosis and its mutation in cancers.


PLOS ONE | 2011

The Role of Palmitoylation in Signalling, Cellular Trafficking and Plasma Membrane Localization of Protease-Activated Receptor-2

Mark N. Adams; Melinda E. Christensen; Yaowu He; Nigel J. Waterhouse; John D. Hooper

Protease-activated receptor-2 (PAR2) is a G protein coupled receptor (GPCR) activated by proteolytic cleavage of its amino terminal domain by trypsin-like serine proteases. This irreversible activation mechanism leads to rapid receptor desensitization by internalisation and degradation. We have explored the role of palmitoylation, the post-translational addition of palmitate, in PAR2 signalling, trafficking, cell surface expression and desensitization. Experiments using the palmitoylation inhibitor 2-bromopalmitate indicated that palmitate addition is important in trafficking of PAR2 endogenously expressed by prostate cancer cell lines. This was supported by palmitate labelling using two approaches, which showed that PAR2 stably expressed by CHO-K1 cells is palmitoylated and that palmitoylation occurs on cysteine 361. Palmitoylation is required for optimal PAR2 signalling as Ca2+ flux assays indicated that in response to trypsin agonism, palmitoylation deficient PAR2 is ∼9 fold less potent than wildtype receptor with a reduction of about 33% in the maximum signal induced via the mutant receptor. Confocal microscopy, flow cytometry and cell surface biotinylation analyses demonstrated that palmitoylation is required for efficient cell surface expression of PAR2. We also show that receptor palmitoylation occurs within the Golgi apparatus and is required for efficient agonist-induced rab11a-mediated trafficking of PAR2 to the cell surface. Palmitoylation is also required for receptor desensitization, as agonist-induced β-arrestin recruitment and receptor endocytosis and degradation were markedly reduced in CHO-PAR2-C361A cells compared with CHO-PAR2 cells. These data provide new insights on the life cycle of PAR2 and demonstrate that palmitoylation is critical for efficient signalling, trafficking, cell surface localization and degradation of this receptor.


Biological Chemistry | 2008

Prostatic trypsin-like kallikrein-related peptidases (KLKs) and other prostate-expressed tryptic proteinases as regulators of signalling via proteinase-activated receptors (PARs).

Andrew J. Ramsay; Janet C. Reid; Mark N. Adams; Hemamali Samaratunga; Ying Dong; Judith A. Clements; John D. Hooper

Abstract The prostate is a site of high expression of serine proteinases including members of the kallikrein-related peptidase (KLK) family, as well as other secreted and membrane-anchored serine proteinases. It has been known for some time that members of this enzyme family elicit cellular responses by acting directly on cells. More recently, it has been recognised that for serine proteinases with specificity for cleavage after arginine and lysine residues (trypsin-like or tryptic enzymes) these cellular responses are often mediated by cleavage of members of the proteinase-activated receptor (PAR) family – a four member sub-family of G protein-coupled receptors. Here, we review the expression of PARs in prostate, the ability of prostatic trypsin-like KLKs and other prostate-expressed tryptic enzymes to cleave PARs, as well as the prostate cancer-associated consequences of PAR activation. In addition, we explore the dysregulation of trypsin-like serine proteinase activity through the loss of normal inhibitory mechanisms and potential interactions between these dysregulated enzymes leading to aberrant PAR activation, intracellular signalling and cancer-promoting cellular changes.


Oncogene | 2015

EGF inhibits constitutive internalization and palmitoylation-dependent degradation of membrane-spanning procancer CDCP1 promoting its availability on the cell surface.

Mark N. Adams; Brittney S. Harrington; Yaowu He; Claire M. Davies; Sarah J. Wallace; Naven Chetty; Alexander J. Crandon; Niara B. Oliveira; Catherine Shannon; Jermaine Coward; John W. Lumley; Lewis Perrin; Jane E. Armes; John D. Hooper

Many cancers are dependent on inappropriate activation of epidermal growth factor receptor (EGFR), and drugs targeting this receptor can improve patient survival, although benefits are generally short-lived. We reveal a novel mechanism linking EGFR and the membrane-spanning, cancer-promoting protein CDCP1 (CUB domain-containing protein 1). Under basal conditions, cell surface CDCP1 constitutively internalizes and undergoes palmitoylation-dependent degradation by a mechanism in which it is palmitoylated in at least one of its four cytoplasmic cysteines. This mechanism is functional in vivo as CDCP1 is elevated and palmitoylated in high-grade serous ovarian tumors. Interestingly, activation of the EGFR system with EGF inhibits proteasome-mediated, palmitoylation-dependent degradation of CDCP1, promoting recycling of CDCP1 to the cell surface where it is available to mediate its procancer effects. We also show that mechanisms inducing relocalization of CDCP1 to the cell surface, including disruption of its palmitoylation and EGF treatment, promote cell migration. Our data provide the first evidence that the EGFR system can function to increase the lifespan of a protein and also promote its recycling to the cell surface. This information may be useful for understanding mechanisms of resistance to EGFR therapies and assist in the design of treatments for EGFR-dependent cancers.


Naunyn-schmiedebergs Archives of Pharmacology | 2012

Evaluation of antibodies directed against human protease-activated receptor-2

Mark N. Adams; Charles N. Pagel; Eleanor J. Mackie; John D. Hooper

Protease-activated receptor 2 (PAR2) is a G protein-coupled receptor activated by intramolecular docking of a tethered ligand that is released by the actions of proteases, mainly of the serine protease family. Here, we evaluate four commercially available anti-PAR2 antibodies, SAM11, C17, N19 and H99, demonstrating marked differences in the ability of these reagents to detect the target receptor in Western blot, immunocytochemical and flow cytometry applications. In Western blot analysis, we evaluated antibody reactivity against both ectopic and endogenous receptors. Against material from transfected cells, we show that SAM11 and N19, and to a lesser extent C17, but not H99, are able to detect ectopic PAR2. Interestingly, these Western blot analyses indicate that N19 and C17 detect conformations of ectopic PAR2 distinct to those recognised by SAM11. Significantly, our data also indicate that Western blot signal detected by SAM11 and C17, and much of the signal detected by N19, against cells endogenously expressing PAR2 is non-specific. Despite confounding non-specific signals, we were able to discern N19 reactivity against endogenous PAR2 as a broad smear that we also observed in ectopically expressing human and mouse cells and that is sensitive to loss of N-glycosylation. In immunocytochemistry analysis, each antibody is able to detect ectopic PAR2 although it appears that H99 detects only a subset of the ectopically expressed receptor. In addition, SAM11 and N19 are able to detect both ectopic and endogenous cell surface PAR2 by flow cytometry. In summary: (1) each antibody can detect ectopic PAR2 by immunocytochemical analysis with SAM11 and N19 suitable for cell surface detection of both ectopic and endogenous receptor by flow cytometry; (2) in Western blot analysis, N19, SAM11 and C17 can detect ectopically expressed PAR2, with only N19 able to detect the endogenous receptor by this technique and (3) in each of these approaches, appropriate controls are essential to ensure that non-specific reactivity is identified.


Scientific Reports | 2016

hSSB1 (NABP2/OBFC2B) is regulated by oxidative stress

Nicolas Paquet; Mark N. Adams; Nicholas W. Ashton; Christine Touma; Roland Gamsjaeger; Liza Cubeddu; Vincent Leong; Sam Beard; Emma Bolderson; Catherine H. Botting; Kenneth J. O’Byrne; Derek J. Richard

The maintenance of genome stability is an essential cellular process to prevent the development of diseases including cancer. hSSB1 (NABP2/ OBFC2A) is a critical component of the DNA damage response where it participates in the repair of double-strand DNA breaks and in base excision repair of oxidized guanine residues (8-oxoguanine) by aiding the localization of the human 8-oxoguanine glycosylase (hOGG1) to damaged DNA. Here we demonstrate that following oxidative stress, hSSB1 is stabilized as an oligomer which is required for hSSB1 to function in the removal of 8-oxoguanine. Monomeric hSSB1 shows a decreased affinity for oxidized DNA resulting in a cellular 8-oxoguanine-repair defect and in the absence of ATM signaling initiation. While hSSB1 oligomerization is important for the removal of 8-oxoguanine from the genome, it is not required for the repair of double-strand DNA-breaks by homologous recombination. These findings demonstrate a novel hSSB1 regulatory mechanism for the repair of damaged DNA.


Nucleic Acids Research | 2016

A structural analysis of DNA binding by hSSB1 (NABP2/OBFC2B) in solution

Christine Touma; Ruvini Kariawasam; Adrian X. Gimenez; Ray E. Bernardo; Nicholas W. Ashton; Mark N. Adams; Nicolas Paquet; Tristan I. Croll; Kenneth J. O'Byrne; Derek J. Richard; Liza Cubeddu; Roland Gamsjaeger

Single-stranded DNA binding proteins (SSBs) play an important role in DNA processing events such as replication, recombination and repair. Human single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) contains a single oligosaccharide/oligonucleotide binding (OB) domain followed by a charged C-terminus and is structurally homologous to the SSB from the hyperthermophilic crenarchaeote Sulfolobus solfataricus. Recent work has revealed that hSSB1 is critical to homologous recombination and numerous other important biological processes such as the regulation of telomeres, the maintenance of DNA replication forks and oxidative damage repair. Since the ability of hSSB1 to directly interact with single-stranded DNA (ssDNA) is paramount for all of these processes, understanding the molecular details of ssDNA recognition is essential. In this study, we have used solution-state nuclear magnetic resonance in combination with biophysical and functional experiments to structurally analyse ssDNA binding by hSSB1. We reveal that ssDNA recognition in solution is modulated by base-stacking of four key aromatic residues within the OB domain. This DNA binding mode differs significantly from the recently determined crystal structure of the SOSS1 complex containing hSSB1 and ssDNA. Our findings elucidate the detailed molecular mechanism in solution of ssDNA binding by hSSB1, a major player in the maintenance of genomic stability.

Collaboration


Dive into the Mark N. Adams's collaboration.

Top Co-Authors

Avatar

Derek J. Richard

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

John D. Hooper

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Joshua T. Burgess

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Kenneth J. O'Byrne

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Yaowu He

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Emma Bolderson

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Kenneth J. O’Byrne

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar

Nicolas Paquet

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicholas W. Ashton

Queensland University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge