Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Desmond J. Smith is active.

Publication


Featured researches published by Desmond J. Smith.


Neuron | 1999

A YAC Mouse Model for Huntington’s Disease with Full-Length Mutant Huntingtin, Cytoplasmic Toxicity, and Selective Striatal Neurodegeneration

J.Graeme Hodgson; Nadia Agopyan; Claire-Anne Gutekunst; Blair R. Leavitt; Fred LePiane; Roshni R. Singaraja; Desmond J. Smith; Nagat Bissada; Krista McCutcheon; Jamal Nasir; Laure Jamot; Xiao-Jiang Li; Mary E. Stevens; Erica Rosemond; John C. Roder; Anthony G. Phillips; Edward M. Rubin; Steven M. Hersch; Michael R. Hayden

We have produced yeast artificial chromosome (YAC) transgenic mice expressing normal (YAC18) and mutant (YAC46 and YAC72) huntingtin (htt) in a developmental and tissue-specific manner identical to that observed in Huntingtons disease (HD). YAC46 and YAC72 mice show early electrophysiological abnormalities, indicating cytoplasmic dysfunction prior to observed nuclear inclusions or neurodegeneration. By 12 months of age, YAC72 mice have a selective degeneration of medium spiny neurons in the lateral striatum associated with the translocation of N-terminal htt fragments to the nucleus. Neurodegeneration can be present in the absence of macro- or microaggregates, clearly showing that aggregates are not essential to initiation of neuronal death. These mice demonstrate that initial neuronal cytoplasmic toxicity is followed by cleavage of htt, nuclear translocation of htt N-terminal fragments, and selective neurodegeneration.


Nature Genetics | 1997

Functional screening of 2 Mb of human chromosome 21q22.2 in transgenic mice implicates minibrain in learning defects associated with Down syndrome

Desmond J. Smith; Mary E. Stevens; Sharmila P. Sudanagunta; Roderick T. Bronson; Michael Makhinson; Ayako M. Watabe; Thomas J. O'Dell; Jingly Fung; Heinz-Ulrich G. Weier; Jan-Fang Cheng; Edward M. Rubin

Using Down syndrome as a model for complex trait analysis, we sought to identify loci from chromosome 21q22.2 which, when present in an extra dose, contribute to learning abnormalities. We generated low-copy-number transgenic mice, containing four different yeast artificial chromosomes (YACs) that together cover approximately 2 megabases (Mb) of contiguous DNA from 21q22,2. We subjected independent lines derived from each of these YAC transgenes to a series of behavioural and learning assays. Two of the four YACs caused defects in learning and memory in the transgenic animals, while the other two YACs had no effect. The most severe defects were caused by a 570-kb YAC; the interval responsible for these defects was narrowed to a 180-kb critical region as a consequence of YAC fragmentation. This region contains the human homologue of a Drosophila gene, minibrain, and strongly implicates it in learning defects associated with Down syndrome.


Physics in Medicine and Biology | 2005

Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging

Abhijit J. Chaudhari; Felix Darvas; James R. Bading; Rex Moats; Peter S. Conti; Desmond J. Smith; Simon R. Cherry; Richard M. Leahy

For bioluminescence imaging studies in small animals, it is important to be able to accurately localize the three-dimensional (3D) distribution of the underlying bioluminescent source. The spectrum of light produced by the source that escapes the subject varies with the depth of the emission source because of the wavelength-dependence of the optical properties of tissue. Consequently, multispectral or hyperspectral data acquisition should help in the 3D localization of deep sources. In this paper, we describe a framework for fully 3D bioluminescence tomographic image acquisition and reconstruction that exploits spectral information. We describe regularized tomographic reconstruction techniques that use semi-infinite slab or FEM-based diffusion approximations of photon transport through turbid media. Singular value decomposition analysis was used for data dimensionality reduction and to illustrate the advantage of using hyperspectral rather than achromatic data. Simulation studies in an atlas-mouse geometry indicated that sub-millimeter resolution may be attainable given accurate knowledge of the optical properties of the animal. A fixed arrangement of mirrors and a single CCD camera were used for simultaneous acquisition of multispectral imaging data over most of the surface of the animal. Phantom studies conducted using this system demonstrated our ability to accurately localize deep point-like sources and show that a resolution of 1.5 to 2.2 mm for depths up to 6 mm can be achieved. We also include an in vivo study of a mouse with a brain tumour expressing firefly luciferase. Co-registration of the reconstructed 3D bioluminescent image with magnetic resonance images indicated good anatomical localization of the tumour.


Pediatric Research | 2000

Genetic Dissection of Region Associated with Behavioral Abnormalities in Mouse Models for Down Syndrome

Haruhiko Sago; Elaine J. Carlson; Desmond J. Smith; Edward M. Rubin; Linda S. Crnic; Ting-Ting Huang; Charles J. Epstein

Two animal models of Down syndrome (human trisomy 21) with segmental trisomy for all (Ts65Dn) or part (Ts1Cje) of human chromosome 21-homologous region of mouse chromosome 16 have cognitive and behavioral abnormalities. To compare these trisomies directly and to assess the phenotypic contribution of the region of difference between them, Ts65Dn, Ts1Cje, and a new segmental trisomic (Ms1Ts65) for the region of difference (App to Sod1) have been generated as littermates and tested in parallel. Although the performance of Ts1Cje mice in the Morris water maze is similar to that of Ts65Dn mice, the reverse probe tests indicate that Ts65Dn is more severely affected. By contrast, the deficits of Ms1Ts65 mice are significantly less severe than those of Ts65Dn. Therefore, whereas triplication of Sod1 to Mx1 plays the major role in causing the abnormalities of Ts65Dn in the Morris water maze, imbalance of App to Sod1 also contributes to the poor performance. Ts65Dn mice are hyperactive and Ts1Cje mice are hypoactive; the activity of Ms1Ts65 mice is not significantly above normal. These findings indicate that genes in the Ms1Ts65 trisomic region must interact with others in the Ts1Cje region to produce hyperactivity in Ts65Dn mice.


PLOS ONE | 2009

Green Tea Polyphenols Rescue of Brain Defects Induced by Overexpression of DYRK1A

Fayçal Guedj; Catherine Sebrié; Isabelle Rivals; Aurélie Ledru; Evelyne Paly; Jean Charles Bizot; Desmond J. Smith; Edward M. Rubin; Brigitte Gillet; Mariona Arbones; Jean Maurice Delabar

Individuals with partial HSA21 trisomies and mice with partial MMU16 trisomies containing an extra copy of the DYRK1A gene present various alterations in brain morphogenesis. They present also learning impairments modeling those encountered in Down syndrome. Previous MRI and histological analyses of a transgenic mice generated using a human YAC construct that contains five genes including DYRK1A reveal that DYRK1A is involved, during development, in the control of brain volume and cell density of specific brain regions. Gene dosage correction induces a rescue of the brain volume alterations. DYRK1A is also involved in the control of synaptic plasticity and memory consolidation. Increased gene dosage results in brain morphogenesis defects, low BDNF levels and mnemonic deficits in these mice. Epigallocatechin gallate (EGCG) — a member of a natural polyphenols family, found in great amount in green tea leaves — is a specific and safe DYRK1A inhibitor. We maintained control and transgenic mice overexpressing DYRK1A on two different polyphenol-based diets, from gestation to adulthood. The major features of the transgenic phenotype were rescued in these mice.


Journal of Proteome Research | 2008

Mitochondrial Dysfunction, Oxidative Stress, and Apoptosis Revealed by Proteomic and Transcriptomic Analyses of the Striata in Two Mouse Models of Parkinson’s Disease

Mark H. Chin; Wei Jun Qian; Haixing Wang; Vladislav A. Petyuk; Joshua S. Bloom; Daniel M. Sforza; Goran Lacan; Dahai Liu; Arshad H. Khan; Rita M. Cantor; Diana J. Bigelow; William P. Melega; David G. Camp; Richard D. Smith; Desmond J. Smith

The molecular mechanisms underlying the changes in the nigrostriatal pathway in Parkinsons disease (PD) are not completely understood. Here, we use mass spectrometry and microarrays to study the proteomic and transcriptomic changes in the striatum of two mouse models of PD, induced by the distinct neurotoxins 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and methamphetamine (METH). Proteomic analyses resulted in the identification and relative quantification of 912 proteins with two or more unique peptides and 86 proteins with significant abundance changes following neurotoxin treatment. Similarly, microarray analyses revealed 181 genes with significant changes in mRNA, following neurotoxin treatment. The combined protein and gene list provides a clearer picture of the potential mechanisms underlying neurodegeneration observed in PD. Functional analysis of this combined list revealed a number of significant categories, including mitochondrial dysfunction, oxidative stress response, and apoptosis. These results constitute one of the largest descriptive data sets integrating protein and transcript changes for these neurotoxin models with many similar end point phenotypes but distinct mechanisms.


BMC Systems Biology | 2011

Gene networks associated with conditional fear in mice identified using a systems genetics approach

Christopher C. Park; Greg D. Gale; Simone de Jong; Anatole Ghazalpour; Brian J. Bennett; Charles R. Farber; Peter Langfelder; Andy Lin; Arshad H. Khan; Eleazar Eskin; Steve Horvath; Aldons J. Lusis; Roel A. Ophoff; Desmond J. Smith

BackgroundOur understanding of the genetic basis of learning and memory remains shrouded in mystery. To explore the genetic networks governing the biology of conditional fear, we used a systems genetics approach to analyze a hybrid mouse diversity panel (HMDP) with high mapping resolution.ResultsA total of 27 behavioral quantitative trait loci were mapped with a false discovery rate of 5%. By integrating fear phenotypes, transcript profiling data from hippocampus and striatum and also genotype information, two gene co-expression networks correlated with context-dependent immobility were identified. We prioritized the key markers and genes in these pathways using intramodular connectivity measures and structural equation modeling. Highly connected genes in the context fear modules included Psmd6, Ube2a and Usp33, suggesting an important role for ubiquitination in learning and memory. In addition, we surveyed the architecture of brain transcript regulation and demonstrated preservation of gene co-expression modules in hippocampus and striatum, while also highlighting important differences. Rps15a, Kif3a, Stard7, 6330503K22RIK, and Plvap were among the individual genes whose transcript abundance were strongly associated with fear phenotypes.ConclusionApplication of our multi-faceted mapping strategy permits an increasingly detailed characterization of the genetic networks underlying behavior.


Journal of Bone and Mineral Research | 2009

An integrative genetics approach to identify candidate genes regulating BMD: combining linkage, gene expression, and association.

Charles R. Farber; Atila van Nas; Anatole Ghazalpour; Jason E. Aten; Sudheer Doss; Brandon C. Sos; Eric E. Schadt; Leslie Ingram-Drake; Richard C. Davis; Steve Horvath; Desmond J. Smith; Thomas A. Drake; Aldons J. Lusis

Numerous quantitative trait loci (QTLs) affecting bone traits have been identified in the mouse; however, few of the underlying genes have been discovered. To improve the process of transitioning from QTL to gene, we describe an integrative genetics approach, which combines linkage analysis, expression QTL (eQTL) mapping, causality modeling, and genetic association in outbred mice. In C57BL/6J × C3H/HeJ (BXH) F2 mice, nine QTLs regulating femoral BMD were identified. To select candidate genes from within each QTL region, microarray gene expression profiles from individual F2 mice were used to identify 148 genes whose expression was correlated with BMD and regulated by local eQTLs. Many of the genes that were the most highly correlated with BMD have been previously shown to modulate bone mass or skeletal development. Candidates were further prioritized by determining whether their expression was predicted to underlie variation in BMD. Using network edge orienting (NEO), a causality modeling algorithm, 18 of the 148 candidates were predicted to be causally related to differences in BMD. To fine‐map QTLs, markers in outbred MF1 mice were tested for association with BMD. Three chromosome 11 SNPs were identified that were associated with BMD within the Bmd11 QTL. Finally, our approach provides strong support for Wnt9a, Rasd1, or both underlying Bmd11. Integration of multiple genetic and genomic data sets can substantially improve the efficiency of QTL fine‐mapping and candidate gene identification.


Journal of Lipid Research | 2010

Differential expression and function of ABCG1 and ABCG4 during development and aging

Dragana D. Bojanic; Paul T. Tarr; Greg D. Gale; Desmond J. Smith; Dean Bok; Bryan Chen; Steven Nusinowitz; Anita Lövgren-Sandblom; Ingemar Björkhem; Peter A. Edwards

ABCG1 and ABCG4 are highly homologous members of the ATP binding cassette (ABC) transporter family that regulate cellular cholesterol homeostasis. In adult mice, ABCG1 is known to be expressed in numerous cell types and tissues, whereas ABCG4 expression is limited to the central nervous system (CNS). Here, we show significant differences in expression of these two transporters during development. Examination of β-galactosidase-stained tissue sections from Abcg1−/−LacZ and Abcg4−/−LacZ knockin mice shows that ABCG4 is highly but transiently expressed both in hematopoietic cells and in enterocytes during development. In contrast, ABCG1 is expressed in macrophages and in endothelial cells of both embryonic and adult liver. We also show that ABCG1 and ABCG4 are both expressed as early as E12.5 in the embryonic eye and developing CNS. Loss of both ABCG1 and ABCG4 results in accumulation in the retina and/or brain of oxysterols, in altered expression of liver X receptor and sterol-regulatory element binding protein-2 target genes, and in a stress response gene. Finally, behavioral tests show that Abcg4−/− mice have a general deficit in associative fear memory. Together, these data indicate that loss of ABCG1 and/or ABCG4 from the CNS results in changes in metabolic pathways and in behavior.


Physics in Medicine and Biology | 2006

A hyperspectral fluorescence system for 3D in vivo optical imaging

Guido Zavattini; Stefania Vecchi; Gregory S. Mitchell; Ulli Weisser; Richard M. Leahy; Bernd J. Pichler; Desmond J. Smith; Simon R. Cherry

In vivo optical instruments designed for small animal imaging generally measure the integrated light intensity across a broad band of wavelengths, or make measurements at a small number of selected wavelengths, and primarily use any spectral information to characterize and remove autofluorescence. We have developed a flexible hyperspectral imaging instrument to explore the use of spectral information to determine the 3D source location for in vivo fluorescence imaging applications. We hypothesize that the spectral distribution of the emitted fluorescence signal can be used to provide additional information to 3D reconstruction algorithms being developed for optical tomography. To test this hypothesis, we have designed and built an in vivo hyperspectral imaging system, which can acquire data from 400 to 1000 nm with 3 nm spectral resolution and which is flexible enough to allow the testing of a wide range of illumination and detection geometries. It also has the capability to generate a surface contour map of the animal for input into the reconstruction process. In this paper, we present the design of the system, demonstrate the depth dependence of the spectral signal in phantoms and show the ability to reconstruct 3D source locations using the spectral data in a simple phantom. We also characterize the basic performance of the imaging system.

Collaboration


Dive into the Desmond J. Smith's collaboration.

Top Co-Authors

Avatar

Arshad H. Khan

University of California

View shared research outputs
Top Co-Authors

Avatar

Richard M. Leahy

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Richard D. Smith

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wei Jun Qian

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark H. Chin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David G. Camp

Pacific Northwest National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Alex Ossadtchi

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge