Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Despoina Angeliki Stavropoulou is active.

Publication


Featured researches published by Despoina Angeliki Stavropoulou.


International Journal of Food Microbiology | 2015

Amino acid conversions by coagulase-negative staphylococci in a rich medium : assessment of inter- and intraspecies heterogeneity

Despoina Angeliki Stavropoulou; Wim Borremans; Luc De Vuyst; Stefaan De Smet; Frédéric Leroy

The ability of coagulase-negative staphylococci (CNS) to convert amino acids into volatile compounds and biogenic amines was investigated after 24h and 48 h of incubation in a rich medium (brain heart infusion). Volatile compounds were measured with static-headspace gas chromatography and mass spectrometry (SH-GC-MS); biogenic amine measurements were carried out with a newly developed method based on ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC-MS/MS). In total, 56 CNS strains from five different species were used, namely Staphylococcus carnosus, Staphylococcus epidermidis, Staphylococcus equorum, Staphylococcus saprophyticus, and Staphylococcus xylosus. With respect to the production of volatile compounds, the leucine-derived 3-methyl butanol was produced over time by most CNS strains, up to 52 μM for S. xylosus W1-1 after 48 h of incubation. The average production by strains of S. xylosus was significantly higher than for strains of S. carnosus, whereas strains of S. epidermidis turned out to be poor producers. Yet, differences between species were blurred to a large degree because of the high strain variability. A few strains also produced 3-methyl butanal on top of the amount that was already present in the medium background, although most CNS led to a decrease of this compound. Concerning biogenic amines, the average total concentrations per species remained below 100 μM after 48 h of incubation. The most abundant variant was 2-phenylethylamine (PEA), especially within S. carnosus (average of 65 μM after 48 h of incubation). Yet, some individual strains were able to produce higher concentrations, as found for the PEA production of 295 μM by S. epidermidis ATCC 12228 after 48 h of incubation. The insights obtained during this study indicate heterogeneity and are of importance in view of both starter culture development and the evaluation of a spontaneously established CNS microbiota in artisan-type meat fermentations.


International Journal of Food Microbiology | 2017

Exploring the metabolic heterogeneity of coagulase-negative staphylococci to improve the quality and safety of fermented meats: a review.

María Sánchez Mainar; Despoina Angeliki Stavropoulou; Frédéric Leroy

The production of fermented meats, such as fermented sausage, relies on the metabolic activities of lactic acid bacteria and catalase-positive cocci, in particular the group of coagulase-negative staphylococci (CNS). Conventional use of CNS as meat starter cultures usually leads to an appropriate cured colour development based on their nitrate reductase activity, whereas their catalase activity reduces oxidative damage. In addition, CNS metabolism contributes to flavour, although the precise effects are difficult to estimate. There are reasons to believe that these basic technological features of CNS can be further enlarged by exploring their full metabolic potential. Non-negligible differences in metabolism among and within different species of CNS indicate that a rational selection of strains may lead to the development of novel starter cultures with enhanced functionality. Firstly, the use of CNS strains with a superior ability to use alternative energy sources, such as nucleosides or arginine, may improve culture competitiveness and survival. Secondly, cured colour generation could be optimised to lower the amounts of curing salts needed, either by selecting for efficient nitrate-reducing CNS strains or by exploring the potential alternative based on nitric oxide synthase activity. Thirdly, CNS with specific aroma-producing abilities may help to accentuate specific flavours, whereby the selection of wild-type strains from artisan-type fermented sausages seems attractive in the framework of innovation-through-tradition. Finally, bacteriocin-producing CNS strains may offer solutions for bioprotection towards meat pathogens such as Clostridium botulinum and Staphylococcus aureus. Overall, making use of the metabolic inter- and intraspecies heterogeneity of CNS is promising for the elaboration of healthier, tastier, and safer fermented meats. Yet, the proposed strategies are sometimes still overly theoretical and speculative, requiring further proof-of-principle.


Meat Science | 2016

Effect of sodium ascorbate and sodium nitrite on protein and lipid oxidation in dry fermented sausages

Alberto Berardo; H. De Maere; Despoina Angeliki Stavropoulou; Tine Rysman; Frédéric Leroy; S. De Smet

The effects of sodium nitrite and ascorbate on lipid and protein oxidation were studied during the ripening process of dry fermented sausages. Samples were taken at day 0, 2, 8, 14, 21 and 28 of ripening to assess lipid (malondialdehyde) and protein (carbonyls and sulfhydryl groups) oxidation. Sodium ascorbate and nitrite were separately able to reduce the formation of malondialdehyde. Their combined addition resulted in higher amounts of carbonyl compounds compared to their separate addition or the treatment without any of both compounds. Moreover, sodium nitrite limited the formation of γ-glutamic semialdehyde whereas sodium ascorbate showed a pro-oxidant effect. A loss of thiol groups was observed during ripening, which was not affected by the use of sodium ascorbate nor sodium nitrite. In conclusion, sodium nitrite and ascorbate affected protein and lipid oxidation in different manners. The possible pro-oxidant effect of their combined addition on carbonyl formation might influence the technological and sensory properties of these products.


Food Chemistry | 2017

Actin proteolysis during ripening of dry fermented sausages at different pH values

Alberto Berardo; Bart Devreese; H. De Maere; Despoina Angeliki Stavropoulou; G. Van Royen; Frédéric Leroy; S. De Smet

In dry fermented sausages, myofibrillar proteins undergo intense proteolysis generating small peptides and free amino acids that play a role in flavour generation. This study aimed to identify small peptides arising from actin proteolysis, as influenced by the type of processing. Two acidification profiles were imposed, in order to mimic the pH normally obtained in southern-type and northern-type dry fermented sausages. The identification of peptides was done by liquid chromatography coupled to mass spectrometry in a data-independent positive mode of acquisition (LC-MSE). During manufacturing of the dry fermented sausages, actin was highly proteolysed, especially in nine regions of the sequence. After fermentation, 52 and 42 actin-derived peptides were identified at high and low pH, respectively, which further increased to 66 and 144 peptides, respectively, at the end of ripening. Most peptides were released at the cleavage sites of cathepsins B and D, which thus play an important role.


International Journal of Food Microbiology | 2018

Pervasiveness of Staphylococcus carnosus over Staphylococcus xylosus is affected by the level of acidification within a conventional meat starter culture set-up

Despoina Angeliki Stavropoulou; Hannelore De Maere; Alberto Berardo; Bente Janssens; Panagiota Filippou; Luc De Vuyst; Stefaan De Smet; Frédéric Leroy

Staphylococcus carnosus and Staphylococcus xylosus are commonly used, individually or in combination, within conventional starter cultures for the purposes of colour and flavour development during meat fermentation. Yet, little is known about the relative importance of both species under different processing conditions. The present study aimed at investigating the competitiveness of S. carnosus within a meat starter culture under different acidification profiles. The experimental set-up involved a gradient of decreasing experimental control but increasing realism, ranging from liquid meat fermentation models in a meat simulation medium, over solid mince-based meat fermentation models, to fermented sausage production on pilot-scale level. In general, S. carnosus gained a fitness advantage over S. xylosus in the most acidified variants of each set-up. In contrast, increasing persistence of S. xylosus was seen at the mildest acidification profiles, especially when approximating actual meat fermentation practices. Under such conditions, S. carnosus was reduced to co-prevalence in the mince-based meat fermentation models and was fully outcompeted on pilot-scale level. The latter was even the case when no S. xylosus starter culture was added, whereby S. carnosus was overpowered by staphylococci that originated from the meat background (mostly S. xylosus strains). The results of the present study suggested that conventional starter cultures behave differently when applied in different technological set-ups or using different recipes, with possible repercussions on fermented meat product quality.


International Journal of Food Microbiology | 2018

The narrowing down of inoculated communities of coagulase-negative staphylococci in fermented meat models is modulated by temperature and pH

Despoina Angeliki Stavropoulou; Emiel Van Reckem; Stefaan De Smet; Luc De Vuyst; Frédéric Leroy

Coagulase-negative staphylococci (CNS) are involved in colour and flavour formation of fermented meats. Their communities are established either spontaneously, as in some artisan-type products, or using a starter culture. The latter usually consists of Staphylococcus carnosus and/or Staphylococcus xylosus strains, although strains from other CNS species also have potential for application. However, it is not entirely clear how the fitness of alternative starter cultures within a fermented meat matrix compares to conventional ones and how this may be affected by processing conditions. Therefore, the aim of this study was to assess the influence of two key processing conditions, namely temperature and acidity, on the competitiveness of a cocktail of five different strains of CNS belonging to species that are potentially important for meat fermentation (Staphylococcus xylosus 2S7-2, S. carnosus 833, Staphylococcus epidermidis ATCC 12228, Staphylococcus equorum DFL-S19, and Staphylococcus saprophyticus FPS1). To this end, fermented meat models consisting of cured meat batters with initial pH values of 5.3, 5.5, or 5.7 were inoculated with these strains, stuffed in containers, and incubated at 23, 30, or 37 °C. Both the pH level and the temperature influenced the composition of the CNS communities, giving a competitive advantage to the best adapted species. Staphylococcus xylosus preferred low temperature and mild acidity, whereas an elevated temperature selected for S. epidermidis and a low pH for S. carnosus. Under the conditions tested, S. saprophyticus and S. equorum were outcompeted by the three other CNS species. Hence, CNS communities in fermented meats are not only established based on the initial presence of specific species in the meat batter but also by their subsequent adaptation to the processing conditions during fermentation, potentially overruling the use of starter cultures.


Journal of Applied Microbiology | 2018

Nonconventional starter cultures of coagulase-negative staphylococci to produce animal-derived fermented foods, a SWOT analysis

Despoina Angeliki Stavropoulou; L. De Vuyst; Frédéric Leroy

Coagulase‐negative staphylococci (CNS) are ubiquitous micro‐organisms that are commonly present on animal skin and animal‐derived foods. They are members of the beneficial microbial consortia of several fermented food products where they contribute to quality. Currently, only a few CNS species are included in commercial starter cultures, although many other ones with promising properties have been isolated from diverse food ecosystems. In the present study, a Strengths‐Weaknesses‐Opportunities‐Threats (SWOT) analysis of the potential use of unconventional CNS starter cultures for the fermentation of animal‐derived foods is carried out. An overview of both their desirable and worrisome metabolic traits is given. In general, the application of innovative CNS‐based starter cultures offers opportunities to modulate flavour, improve the safety and health aspects and develop novel colour development strategies for clean label products. Yet, their implementation is often not straightforward as nontrivial obstacles or threats are encountered, which relate to technological, food safety and legal concerns. As most of the desirable and undesirable characteristics of CNS species are strain dependent, a case‐by‐case evaluation is needed when evaluating specific strains for their potential use as novel starter cultures.


Frontiers in Microbiology | 2018

Species pervasiveness within the group of coagulase-negative staphylococci associated with meat fermentation is modulated by pH

Despoina Angeliki Stavropoulou; Hannelore Demaere; Alberto Berardo; Bente Janssens; Panagiota Filippou; Luc De Vuyst; Stefaan De Smet; Frédéric Leroy

During spontaneous meat fermentations, Staphylococcus equorum, Staphylococcus saprophyticus, and Staphylococcus xylosus are generally the most prevailing species within the communities of coagulase-negative staphylococci (CNS). There is an interest to introduce CNS isolates from artisan-style spontaneous meat fermentations as starter cultures in more industrialized processes, as to confer additional quality benefits. However, staphylococcal competitiveness within the meat matrix is affected by the processing conditions, which vary considerably among product types. A major factor of variability relates to the intensity of acidification, driven by the concentration of added carbohydrates. The effect of pH on CNS prevalence was studied in both a mince-based meat fermentation model and in fermented sausages produced on pilot scale. Roughly, from all experiments combined, it appeared that a pH of 5.3 corresponded with a breakpoint for CNS selection. Above this value, a general prevalence by S. xylosus was found, even overruling the addition of starter cultures consisting of S. equorum and S. saprophyticus strains. At pH values below 5.3, S. xylosus was also accompanied by S. equorum (following a mild pH drop) and S. saprophyticus (following a stronger pH drop). Still, addition of starter cultures affected the volatile profile compared to the control batch, even if those starter cultures were not able to dominate during the ripening process. This study nonetheless provides a warning for an overly confident use of specific CNS species as starter cultures, especially when in a given processing context the prevailing conditions do not allow superior growth compared to the CNS from the background microbiota.


Food Microbiology | 2018

Effect of temperature and pH on the community dynamics of coagulase-negative staphylococci during spontaneous meat fermentation in a model system

Despoina Angeliki Stavropoulou; Panagiota Filippou; Stefaan De Smet; Luc De Vuyst; Frédéric Leroy

Coagulase-negative staphylococci (CNS) contribute to the product quality of fermented meats. In spontaneously fermented meats, CNS communities are variable and difficult to predict, as their compositions depend on a superposed combination of different processing factors. To partially disentangle this superposition, a meat model system was used to study the influence of temperature and pH on the CNS community dynamics. Therefore, cured pork mince was prepared that was divided into three batches of different initial acidity levels, namely pH 5.7, pH 5.5, and pH 5.3. These three batches were incubated at three different temperatures, namely 23 °C, 30 °C, and 37 °C. Hence, the experimental set-up resulted in nine combinations of different temperature and initial pH values. Samples were analysed after 3 and 14 days to monitor pH, colony counts, and species diversity of the CNS communities, based on mannitol-salt-phenol-red agar (MSA) medium. At conditions of mild acidity (pH 5.7) and low temperature (23 °C), as often encountered during artisan-type meat fermentations, a co-prevalence of Staphylococcus xylosus, Staphylococcus equorum, and Staphylococcus saprophyticus occurred. At the same initial pH but higher incubation temperatures (30 °C and 37 °C), Staphylococcus lugdunensis became the prevailing CNS species, besides S. saprophyticus (30 °C) and the coagulase-positive species Staphylococcus aureus (37 °C). When the initial pH was set at 5.5, S. saprophyticus was the prevailing CNS species at both 23 °C and 30 °C, but it was replaced by Staphylococcus epidermidis and Staphylococcus simulans at 37 °C after 3 and 14 days, respectively. At the most acidic conditions (pH 5.3), CNS counts declined and many of the MSA isolates were of non-staphylococcal nature. Among others, Staphylococcus carnosus (23 °C), Staphylococcus warneri (30 °C), and S. epidermidis (37 °C) were found. Overall, the results of the present study indicated that the processing factors temperature and pH had a clear impact on the shaping of staphylococcal communities during meat fermentation.


Food Chemistry | 2017

異なるpH値でのドライ発酵ソーセージの熟成中のアクチン蛋白質分解【Powered by NICT】

Alberto Berardo; Bart Devreese; H. De Maere; Despoina Angeliki Stavropoulou; G. Van Royen; Frédéric Leroy; S. De Smet

Collaboration


Dive into the Despoina Angeliki Stavropoulou's collaboration.

Top Co-Authors

Avatar

Frédéric Leroy

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luc De Vuyst

Vrije Universiteit Brussel

View shared research outputs
Top Co-Authors

Avatar

Hannelore De Maere

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

H. De Maere

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bente Janssens

Vrije Universiteit Brussel

View shared research outputs
Researchain Logo
Decentralizing Knowledge