Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Devi Majumdar is active.

Publication


Featured researches published by Devi Majumdar.


Journal of Biological Chemistry | 2008

N-WASP and the Arp2/3 Complex Are Critical Regulators of Actin in the Development of Dendritic Spines and Synapses

Adam M. Wegner; Caroline A. Nebhan; Lan Hu; Devi Majumdar; Kristen M. Meier; Alissa M. Weaver; Donna J. Webb

Changes in the number, size, and shape of dendritic spines are associated with synaptic plasticity, which underlies cognitive functions such as learning and memory. This plasticity is attributed to reorganization of actin, but the molecular signals that regulate this process are poorly understood. In this study, we show neural Wiskott-Aldrich syndrome protein (N-WASP) regulates the formation of dendritic spines and synapses in hippocampal neurons. N-WASP localized to spines and active, functional synapses as shown by loading with FM4–64 dye. Knock down of endogenous N-WASP expression by RNA interference or inhibition of its activity by treatment with a specific inhibitor, wiskostatin, caused a significant decrease in the number of spines and excitatory synapses. Deletion of the C-terminal VCA region of N-WASP, which binds and activates the actin-related protein 2/3 (Arp2/3) complex, dramatically decreased the number of spines and synapses, suggesting activation of the Arp2/3 complex is critical for spine and synapse formation. Consistent with this, Arp3, like N-WASP, was enriched in spines and excitatory synapses and knock down of Arp3 expression impaired spine and synapse formation. A similar defect in spine and synapse formation was observed when expression of an N-WASP activator, Cdc42, was knocked down. Thus, activation of N-WASP and, subsequently, the Arp2/3 complex appears to be an important molecular signal for regulating spines and synapses. Arp2/3-mediated branching of actin could be a mechanism by which dendritic spine heads enlarge and subsequently mature. Collectively, our results point to a critical role for N-WASP and the Arp2/3 complex in spine and synapse formation.


Journal of Neuroscience Methods | 2011

Co-Culture of Neurons and Glia in a Novel Microfluidic Platform

Devi Majumdar; Yandong Gao; Deyu Li; Donna J. Webb

In this study, we developed a microfluidic cell co-culture platform that permits individual manipulation of the microenvironment of different cell types. Separation of the cell culture chambers is controlled by changing the position of a microfabricated valve, which serves as a barrier between the chambers. This unique feature of our platform allowed us to maintain healthy co-cultures of hippocampal neurons and glia for several weeks under optimal conditions. Controlled fluidic exchange between the cell culture chambers provided neurons with a continuous supply of in situ conditioned glia media that was critical for their survival. Using the barrier valve, we transfected neurons in the adjacent chambers with green fluorescent protein (GFP) and mCherry cDNA, respectively, with a transfection efficiency of approximately 40%. Co-culture with glia further enhanced the transfection efficiency of neurons to almost 60%. Thus the microfluidic devices offer a novel platform for the long-term culture, transfection, and individual treatment of central nervous system cells.


Biomedical Microdevices | 2011

A versatile valve-enabled microfluidic cell co-culture platform and demonstration of its applications to neurobiology and cancer biology

Yandong Gao; Devi Majumdar; Bojana Jovanovic; Candice Shaifer; P. Charles Lin; Andries Zijlstra; Donna J. Webb; Deyu Li

A versatile microfluidic platform allowing co-culture of multiple cell populations in close proximity with separate control of their microenvironments would be extremely valuable for many biological applications. Here, we report a simple and compact microfluidic platform that has these desirable features and allows for real-time, live-cell imaging of cell-cell interactions. Using a pneumatically/hydraulically controlled poly(dimethylsiloxane) (PDMS) valve barrier, distinct cell types can be cultured in side-by-side microfluidic chambers with their optimum culture media and treated separately without affecting the other cell population. The platform is capable of both two-dimensional and three-dimensional cell co-culture and through variations of the valve barrier design, the platform allows for cell-cell interactions through either direct cell contact or soluble factors alone. The platform has been used to perform dynamic imaging of synapse formation in hippocampal neurons by separate transfection of two groups of neurons with fluorescent pre- and post-synaptic protein markers. In addition, cross-migration of 4T1 tumor cells and endothelial cells has been studied under normoxic and hypoxic conditions, which revealed different migration patterns, suggesting the importance of the microenvironments in cell-cell interactions and biological activities.


Journal of Biological Chemistry | 2007

α5 Integrin Signaling Regulates the Formation of Spines and Synapses in Hippocampal Neurons

Donna J. Webb; Huaye Zhang; Devi Majumdar; Alan F. Horwitz

The actin-based dynamics of dendritic spines play a key role in synaptic plasticity, which underlies learning and memory. Although it is becoming increasingly clear that modulation of actin is critical for spine dynamics, the upstream molecular signals that regulate the formation and plasticity of spines are poorly understood. In non-neuronal cells, integrins are critical modulators of the actin cytoskeleton, but their function in the nervous system is not well characterized. Here we show that α5 integrin regulates spine morphogenesis and synapse formation in hippocampal neurons. Knockdown of α5 integrin expression using small interfering RNA decreased the number of dendritic protrusions, spines, and synapses. Expression of constitutively active or dominant negative α5 integrin also resulted in alterations in the number of dendritic protrusions, spines, and synapses. α5 integrin signaling regulates spine morphogenesis and synapse formation by a mechanism that is dependent on Src kinase, Rac, and the signaling adaptor GIT1. Alterations in the activity or localization of these molecules result in a significant decrease in the number of spines and synapses. Thus, our results point to a critical role for integrin signaling in regulating the formation of dendritic spines and synapses in hippocampal neurons.


Molecular and Cellular Neuroscience | 2011

An APPL1/Akt signaling complex regulates dendritic spine and synapse formation in hippocampal neurons.

Devi Majumdar; Caroline A. Nebhan; Lan Hu; Bridget Anderson; Donna J. Webb

The formation and plasticity of dendritic spines and synapses, which are poorly understood on a molecular level, are critical for cognitive functions, such as learning and memory. The adaptor protein containing a PH domain, PTB domain, and leucine zipper motif (APPL1) is emerging as a critical regulator of various cellular processes in non-neuronal cells, but its function in the nervous system is not well understood. Here, we show that APPL1 localizes to dendritic spines and synapses and regulates the development of these structures in hippocampal neurons. Knockdown of endogenous APPL1 using siRNA led to a significant decrease in the number of spines as well as synapses and this defect could be rescued by expression of siRNA-resistant APPL1. Expression of exogenous APPL1 increased the spine and synaptic density and the amount of surface GluR1-containing α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs). Deletion of the C-terminal phosphotyrosine binding domain of APPL1, which binds the serine/threonine kinase Akt, resulted in a significant decrease in the spine and synaptic density, suggesting a role for Akt in regulating the development of these structures. Consistent with this, knockdown of Akt with siRNA or expression of dominant negative Akt led to a dramatic decrease in spine and synapse formation. In addition, APPL1 increased the amount of active Akt in spines and synapses and the effects of APPL1 on these structures were dependent on Akt, indicating that Akt is an effector of APPL1 in the regulation of these processes. Moreover, APPL1 signaling modulates spine and synapse formation through p21-activated kinase (PAK). Thus, our results indicate that APPL1 signaling through Akt and PAK is critical for spine and synaptic development and point to a role for APPL1 and its effectors in regulating cognitive function.


Journal of Cell Science | 2009

The Rho-family GEF Asef2 activates Rac to modulate adhesion and actin dynamics and thereby regulate cell migration

Jeanne M. Bristow; Meredith H. Sellers; Devi Majumdar; Bridget Anderson; Lan Hu; Donna J. Webb

Asef2 is a recently identified Rho-family guanine nucleotide exchange factor (GEF) that has been implicated in the modulation of actin, but its function in cell migration and adhesion dynamics is not well understood. In this study, we show that Asef2 is an important regulator of cell migration and adhesion assembly and disassembly (turnover). Asef2 localizes with actin at the leading edge of cells. Knockdown of endogenous Asef2 impairs migration and significantly slows the turnover of adhesions. Asef2 enhances both Rac1 and Cdc42 activity in HT1080 cells, but only Rac1 is crucial for the Asef2-promoted increase in migration and adhesion turnover. Phosphoinositide 3-kinase (PI3K) and the serine/threonine kinase Akt are also essential for the Asef2-mediated effects on migration and adhesion turnover. Consistent with this, Asef2 increases the amount of active Akt at the leading edge of cells. Asef2 signaling leads to an overall decrease in Rho activity, which is crucial for stimulating migration and adhesion dynamics. Thus, our results reveal an important new role for Asef2 in promoting cell migration and rapid adhesion turnover by coordinately regulating the activities of Rho-family GTPases.


Molecular Biology of the Cell | 2012

The endosomal adaptor protein APPL1 impairs the turnover of leading edge adhesions to regulate cell migration

Joshua A. Broussard; Wan Hsin Lin; Devi Majumdar; Bridget Anderson; Brady Eason; Claire M. Brown; Donna J. Webb

The adaptor protein APPL1 regulates cell migration and adhesion dynamics by inhibiting the activity of the serine/threonine kinase Akt at the cell edge and within adhesions. In addition, APPL1 significantly decreases the tyrosine phosphorylation of Akt by the nonreceptor tyrosine kinase Src, which is critical for Akt-mediated cell migration.


Journal of Cell Science | 2013

Activation of Rac by Asef2 promotes myosin II-dependent contractility to inhibit cell migration on type I collagen

Léolène Jean; Devi Majumdar; Mingjian Shi; Louis E. Hinkle; Nicole L. Diggins; Mingfang Ao; Joshua A. Broussard; J. Corey Evans; David P. Choma; Donna J. Webb

Summary Non-muscle myosin II (MyoII) contractility is central to the regulation of numerous cellular processes, including migration. Rho is a well-characterized modulator of actomyosin contractility, but the function of other GTPases, such as Rac, in regulating contractility is currently not well understood. Here, we show that activation of Rac by the guanine nucleotide exchange factor Asef2 (also known as SPATA13) impairs migration on type I collagen through a MyoII-dependent mechanism that enhances contractility. Knockdown of endogenous Rac or treatment of cells with a Rac-specific inhibitor decreases the amount of active MyoII, as determined by serine 19 (S19) phosphorylation, and negates the Asef2-promoted increase in contractility. Moreover, treatment of cells with blebbistatin, which inhibits MyoII activity, abolishes the Asef2-mediated effect on migration. In addition, Asef2 slows the turnover of adhesions in protrusive regions of cells by promoting large mature adhesions, which has been linked to actomyosin contractility, with increased amounts of active &bgr;1 integrin. Hence, our data reveal a new role for Rac activation, promoted by Asef2, in modulating actomyosin contractility, which is important for regulating cell migration and adhesion dynamics.


Cell Adhesion & Migration | 2014

The Rho family GEF Asef2 regulates cell migration in three dimensional (3D) collagen matrices through myosin II

Léolène Jean; Lijie Yang; Devi Majumdar; Yandong Gao; Mingjian Shi; Bryson M. Brewer; Deyu Li; Donna J. Webb

Cell migration is fundamental to a variety of physiological processes, including tissue development, homeostasis, and regeneration. Migration has been extensively studied with cells on 2-dimensional (2D) substrates, but much less is known about cell migration in 3D environments. Tissues and organs are 3D, which is the native environment of cells in vivo, pointing to a need to understand migration and the mechanisms that regulate it in 3D environments. To investigate cell migration in 3D environments, we developed microfluidic devices that afford a controlled, reproducible platform for generating 3D matrices. Using these devices, we show that the Rho family guanine nucleotide exchange factor (GEF) Asef2 inhibits cell migration in 3D type I collagen (collagen I) matrices. Treatment of cells with the myosin II (MyoII) inhibitor blebbistatin abolished the decrease in migration by Asef2. Moreover, Asef2 enhanced MyoII activity as shown by increased phosphorylation of serine 19 (S19). Furthermore, Asef2 increased activation of Rac, which is a Rho family small GTPase, in 3D collagen I matrices. Inhibition of Rac activity by treatment with the Rac-specific inhibitor NSC23766 abrogated the Asef2-promoted increase in S19 MyoII phosphorylation. Thus, our results indicate that Asef2 regulates cell migration in 3D collagen I matrices through a Rac-MyoII-dependent mechanism.


ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer | 2012

A Simple Approach to Probe the Extracellular Signaling Pathways Using Ligand Traps

Yandong Gao; Dana M. Brantley-Sieders; Devi Majumdar; Jin Chen; Donna J. Webb; Deyu Li

Cells communicate with one another through a huge variety of extracellular soluble signaling molecules. A common method in biology to investigate the signaling pathways is to inactivate the gene coding the interested ligand or receptor from cells using modern DNA technology, known as gene knockout. Even though very effective, however, gene knockout is a time-consuming and cost-prohibitive process and requires huge amount of efforts to conduct. Here we present a simple method to probe the extracellular signaling pathways through engineering a semi-permeable barrier between two cell populations. In this approach, ligand traps, receptor-coated nano/micro-particles, are embedded inside the nanoporous barrier. Because the receptors have the ability to selectively bind to certain ligand(s) with high affinity, the associated ligands can be ‘trapped’ inside the barrier when they try to perfuse from one cell population to the other. As a result, the targeted soluble ligands can be effectively blocked from the molecular exchange between the two cell populations. We have demonstrated the feasibility of this novel approach using fluorescent proteins. An analytical model has also been developed to guide the design of the ligand-trap-embedded barrier.Copyright

Collaboration


Dive into the Devi Majumdar's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deyu Li

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lan Hu

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge