Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Donna J. Webb is active.

Publication


Featured researches published by Donna J. Webb.


Nature Cell Biology | 2004

FAK–Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly

Donna J. Webb; Karen Donais; Leanna Whitmore; Sheila M. Thomas; Christopher E. Turner; J. Thomas Parsons; Alan F. Horwitz

Cell migration is a complex, highly regulated process that involves the continuous formation and disassembly of adhesions (adhesion turnover). Adhesion formation takes place at the leading edge of protrusions, whereas disassembly occurs both at the cell rear and at the base of protrusions. Despite the importance of these processes in migration, the mechanisms that regulate adhesion formation and disassembly remain largely unknown. Here we develop quantitative assays to measure the rate of incorporation of molecules into adhesions and the departure of these proteins from adhesions. Using these assays, we show that kinases and adaptor molecules, including focal adhesion kinase (FAK), Src, p130CAS, paxillin, extracellular signal-regulated kinase (ERK) and myosin light-chain kinase (MLCK) are critical for adhesion turnover at the cell front, a process central to migration.


Journal of Cell Science | 2005

Cell migration at a glance

Miguel Vicente-Manzanares; Donna J. Webb; A. Rick Horwitz

Cell migration is a fundamental process, from simple, uni-cellular organisms such as amoeba, to complex multi-cellular organisms such as mammals. Whereas its main functions comprise mating and the search for food in simple organisms ([Manahan et al., 2004][1]), complexity brings a requirement for


The Journal of Neuroscience | 2005

A GIT1/PIX/Rac/PAK Signaling Module Regulates Spine Morphogenesis and Synapse Formation through MLC

Huaye Zhang; Donna J. Webb; Hannelore Asmussen; Shuang Niu; Alan F. Horwitz

Three of seven recently identified genes mutated in nonsyndromic mental retardation are involved in Rho family signaling. Two of the gene products, α-p-21-activated kinase (PAK) interacting exchange factor (αPIX) and PAK3, form a complex with the synaptic adaptor protein G-protein-coupled receptor kinase-interacting protein 1 (GIT1). Using an RNA interference approach, we show that GIT1 is critical for spine and synapse formation. We also show that Rac is locally activated in dendritic spines using fluorescence resonance energy transfer. This local activation of Rac is regulated by PIX, a Rac guanine nucleotide exchange factor. PAK1 and PAK3 serve as downstream effectors of Rac in regulating spine and synapse formation. Active PAK promotes the formation of spines and dendritic protrusions, which correlates with an increase in the number of excitatory synapses. These effects are dependent on the kinase activity of PAK, and PAK functions through phosphorylating myosin II regulatory light chain (MLC). Activated MLC causes an increase in dendritic spine and synapse formation, whereas inhibiting myosin ATPase activity results in decreased spine and synapse formation. Finally, both activated PAK and activated MLC can rescue the defects of GIT1 knockdown, suggesting that PAK and MLC are downstream of GIT1 in regulating spine and synapse formation. Our results point to a signaling complex, consisting of GIT1, PIX, Rac, and PAK, that plays an essential role in the regulation of dendritic spine and synapse formation and provides a potential mechanism by which αPIX and PAK3 mutations affect cognitive functions in mental retardation.


Journal of Cell Biology | 2006

Paxillin phosphorylation at Ser273 localizes a GIT1–PIX–PAK complex and regulates adhesion and protrusion dynamics

Anjana Nayal; Donna J. Webb; Claire M. Brown; Erik Schaefer; Miguel Vicente-Manzanares; Alan Rick Horwitz

Continuous adhesion formation and disassembly (adhesion turnover) in the protrusions of migrating cells is regulated by unclear mechanisms. We show that p21-activated kinase (PAK)–induced phosphorylation of serine 273 in paxillin is a critical regulator of this turnover. Paxillin-S273 phosphorylation dramatically increases migration, protrusion, and adhesion turnover by increasing paxillin–GIT1 binding and promoting the localization of a GIT1–PIX–PAK signaling module near the leading edge. Mutants that interfere with the formation of this ternary module abrogate the effects of paxillin-S273 phosphorylation. PAK-dependent paxillin-S273 phosphorylation functions in a positive-feedback loop, as active PAK, active Rac, and myosin II activity are all downstream effectors of this turnover pathway. Finally, our studies led us to identify in highly motile cells a class of small adhesions that reside near the leading edge, turnover in 20–30 s, and resemble those seen with paxillin-S273 phosphorylation. These adhesions appear to be regulated by the GIT1–PIX–PAK module near the leading edge.


Journal of Cell Biology | 2003

Synapse formation is regulated by the signaling adaptor GIT1

Huaye Zhang; Donna J. Webb; Hannelore Asmussen; Alan F. Horwitz

Dendritic spines in the central nervous system undergo rapid actin-based shape changes, making actin regulators potential modulators of spine morphology and synapse formation. Although several potential regulators and effectors for actin organization have been identified, the mechanisms by which these molecules assemble and localize are not understood. Here we show that the G protein–coupled receptor kinase–interacting protein (GIT)1 serves such a function by targeting actin regulators and locally modulating Rac activity at synapses. In cultured hippocampal neurons, GIT1 is enriched in both pre- and postsynaptic terminals and targeted to these sites by a novel domain. Disruption of the synaptic localization of GIT1 by a dominant-negative mutant results in numerous dendritic protrusions and a significant decrease in the number of synapses and normal mushroom-shaped spines. The phenotype results from mislocalized GIT1 and its binding partner PIX, an exchange factor for Rac. In addition, constitutively active Rac shows a phenotype similar to the GIT1 mutant, whereas dominant-negative Rac inhibits the dendritic protrusion formation induced by mislocalized GIT1. These results demonstrate a novel function for GIT1 as a key regulator of spine morphology and synapse formation and point to a potential mechanism by which mutations in Rho family signaling leads to decreased neuronal connectivity and cognitive defects in nonsyndromic mental retardation.


Journal of Biological Chemistry | 2008

N-WASP and the Arp2/3 Complex Are Critical Regulators of Actin in the Development of Dendritic Spines and Synapses

Adam M. Wegner; Caroline A. Nebhan; Lan Hu; Devi Majumdar; Kristen M. Meier; Alissa M. Weaver; Donna J. Webb

Changes in the number, size, and shape of dendritic spines are associated with synaptic plasticity, which underlies cognitive functions such as learning and memory. This plasticity is attributed to reorganization of actin, but the molecular signals that regulate this process are poorly understood. In this study, we show neural Wiskott-Aldrich syndrome protein (N-WASP) regulates the formation of dendritic spines and synapses in hippocampal neurons. N-WASP localized to spines and active, functional synapses as shown by loading with FM4–64 dye. Knock down of endogenous N-WASP expression by RNA interference or inhibition of its activity by treatment with a specific inhibitor, wiskostatin, caused a significant decrease in the number of spines and excitatory synapses. Deletion of the C-terminal VCA region of N-WASP, which binds and activates the actin-related protein 2/3 (Arp2/3) complex, dramatically decreased the number of spines and synapses, suggesting activation of the Arp2/3 complex is critical for spine and synapse formation. Consistent with this, Arp3, like N-WASP, was enriched in spines and excitatory synapses and knock down of Arp3 expression impaired spine and synapse formation. A similar defect in spine and synapse formation was observed when expression of an N-WASP activator, Cdc42, was knocked down. Thus, activation of N-WASP and, subsequently, the Arp2/3 complex appears to be an important molecular signal for regulating spines and synapses. Arp2/3-mediated branching of actin could be a mechanism by which dendritic spine heads enlarge and subsequently mature. Collectively, our results point to a critical role for N-WASP and the Arp2/3 complex in spine and synapse formation.


Biomicrofluidics | 2015

Recreating blood-brain barrier physiology and structure on chip: A novel neurovascular microfluidic bioreactor.

Jacquelyn A. Brown; Virginia Pensabene; Dmitry A. Markov; Vanessa Allwardt; M. Diana Neely; Mingjian Shi; Clayton M. Britt; Orlando S. Hoilett; Qing Yang; Bryson M. Brewer; Philip C. Samson; Lisa J. McCawley; James M. May; Donna J. Webb; Deyu Li; Aaron B. Bowman; Ronald S. Reiserer; John P. Wikswo

The blood-brain barrier (BBB) is a critical structure that serves as the gatekeeper between the central nervous system and the rest of the body. It is the responsibility of the BBB to facilitate the entry of required nutrients into the brain and to exclude potentially harmful compounds; however, this complex structure has remained difficult to model faithfully in vitro. Accurate in vitro models are necessary for understanding how the BBB forms and functions, as well as for evaluating drug and toxin penetration across the barrier. Many previous models have failed to support all the cell types involved in the BBB formation and/or lacked the flow-created shear forces needed for mature tight junction formation. To address these issues and to help establish a more faithful in vitro model of the BBB, we have designed and fabricated a microfluidic device that is comprised of both a vascular chamber and a brain chamber separated by a porous membrane. This design allows for cell-to-cell communication between endothelial cells, astrocytes, and pericytes and independent perfusion of both compartments separated by the membrane. This NeuroVascular Unit (NVU) represents approximately one-millionth of the human brain, and hence, has sufficient cell mass to support a breadth of analytical measurements. The NVU has been validated with both fluorescein isothiocyanate (FITC)-dextran diffusion and transendothelial electrical resistance. The NVU has enabled in vitro modeling of the BBB using all human cell types and sampling effluent from both sides of the barrier.


Journal of Cell Biology | 2002

Regulation of Rac1 activation by the low density lipoprotein receptor-related protein.

Zhong Ma; Keena S. Thomas; Donna J. Webb; Radim Moravec; Ana M. Salicioni; Wendy M. Mars; Steven L. Gonias

The low density lipoprotein receptor–related protein (LRP-1) binds and mediates the endocytosis of multiple ligands, transports the urokinase-type plasminogen activator receptor (uPAR) and other membrane proteins into endosomes, and binds intracellular adaptor proteins involved in cell signaling. In this paper, we show that in murine embryonic fibroblasts (MEFs) and L929 cells, LRP-1 functions as a major regulator of Rac1 activation, and that this activity depends on uPAR. LRP-1–deficient MEFs demonstrated increased Rac1 activation compared with LRP-1–expressing MEFs, and this property was reversed by expressing the VLDL receptor, a member of the same gene family as LRP-1, with overlapping ligand-binding specificity. Neutralizing the activity of LRP-1 with receptor-associated protein (RAP) increased Rac1 activation and cell migration in MEFs and L929 cells. The same parameters were unaffected by RAP in uPAR−/− MEFs, prepared from uPAR gene knockout embryos, and in uPAR-deficient LM-TK− cells. Untreated uPAR+/+ MEFs demonstrated substantially increased Rac1 activation compared with uPAR−/− MEFs. In addition to Rac1, LRP-1 suppressed activation of extracellular signal–regulated kinase (ERK) in MEFs; however, it was Rac1 (and not ERK) that was responsible for the effects of LRP-1 on MEF migration. Thus, LRP-1 regulates two signaling proteins in the same cell (Rac1 and ERK), both of which may impact on cell migration. In uPAR-negative cells, LRP-1 neutralization does not affect Rac1 activation, and other mechanisms by which LRP-1 may regulate cell migration are not unmasked.


Journal of Neuroscience Methods | 2011

Co-Culture of Neurons and Glia in a Novel Microfluidic Platform

Devi Majumdar; Yandong Gao; Deyu Li; Donna J. Webb

In this study, we developed a microfluidic cell co-culture platform that permits individual manipulation of the microenvironment of different cell types. Separation of the cell culture chambers is controlled by changing the position of a microfabricated valve, which serves as a barrier between the chambers. This unique feature of our platform allowed us to maintain healthy co-cultures of hippocampal neurons and glia for several weeks under optimal conditions. Controlled fluidic exchange between the cell culture chambers provided neurons with a continuous supply of in situ conditioned glia media that was critical for their survival. Using the barrier valve, we transfected neurons in the adjacent chambers with green fluorescent protein (GFP) and mCherry cDNA, respectively, with a transfection efficiency of approximately 40%. Co-culture with glia further enhanced the transfection efficiency of neurons to almost 60%. Thus the microfluidic devices offer a novel platform for the long-term culture, transfection, and individual treatment of central nervous system cells.


Biomedical Microdevices | 2011

A versatile valve-enabled microfluidic cell co-culture platform and demonstration of its applications to neurobiology and cancer biology

Yandong Gao; Devi Majumdar; Bojana Jovanovic; Candice Shaifer; P. Charles Lin; Andries Zijlstra; Donna J. Webb; Deyu Li

A versatile microfluidic platform allowing co-culture of multiple cell populations in close proximity with separate control of their microenvironments would be extremely valuable for many biological applications. Here, we report a simple and compact microfluidic platform that has these desirable features and allows for real-time, live-cell imaging of cell-cell interactions. Using a pneumatically/hydraulically controlled poly(dimethylsiloxane) (PDMS) valve barrier, distinct cell types can be cultured in side-by-side microfluidic chambers with their optimum culture media and treated separately without affecting the other cell population. The platform is capable of both two-dimensional and three-dimensional cell co-culture and through variations of the valve barrier design, the platform allows for cell-cell interactions through either direct cell contact or soluble factors alone. The platform has been used to perform dynamic imaging of synapse formation in hippocampal neurons by separate transfection of two groups of neurons with fluorescent pre- and post-synaptic protein markers. In addition, cross-migration of 4T1 tumor cells and endothelial cells has been studied under normoxic and hypoxic conditions, which revealed different migration patterns, suggesting the importance of the microenvironments in cell-cell interactions and biological activities.

Collaboration


Dive into the Donna J. Webb's collaboration.

Top Co-Authors

Avatar

Deyu Li

Vanderbilt University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge