Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Diana C. Albarado is active.

Publication


Featured researches published by Diana C. Albarado.


Diabetes | 2009

Reduced Adipose Tissue Oxygenation in Human Obesity - Evidence for Rarefaction, Macrophage Chemotaxis and Inflammation without an Angiogenic Response

Magdalena Pasarica; Olga Sereda; Leanne M. Redman; Diana C. Albarado; David Hymel; Laura E. Roan; Jennifer Rood; David H. Burk; Steven R. Smith

OBJECTIVE— Based on rodent studies, we examined the hypothesis that increased adipose tissue (AT) mass in obesity without an adequate support of vascularization might lead to hypoxia, macrophage infiltration, and inflammation. RESEARCH DESIGN AND METHODS— Oxygen partial pressure (AT pO2) and AT temperature in abdominal AT (9 lean and 12 overweight/obese men and women) was measured by direct insertion of a polarographic Clark electrode. Body composition was measured by dual-energy X-ray absorptiometry, and insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp. Abdominal subcutaneous tissue was used for staining, quantitative RT-PCR, and chemokine secretion assay. RESULTS— AT pO2 was lower in overweight/obese subjects than lean subjects (47 ± 10.6 vs. 55 ± 9.1 mmHg); however, this level of pO2 did not activate the classic hypoxia targets (pyruvate dehydrogenase kinase and vascular endothelial growth factor [VEGF]). AT pO2 was negatively correlated with percent body fat (R = −0.50, P < 0.05). Compared with lean subjects, overweight/obese subjects had 44% lower capillary density and 58% lower VEGF, suggesting AT rarefaction (capillary drop out). This might be due to lower peroxisome proliferator–activated receptor γ1 and higher collagen VI mRNA expression, which correlated with AT pO2 (P < 0.05). Of clinical importance, AT pO2 negatively correlated with CD68 mRNA and macrophage inflammatory protein 1α secretion (R = −0.58, R = −0.79, P < 0.05), suggesting that lower AT pO2 could drive AT inflammation in obesity. CONCLUSIONS— Adipose tissue rarefaction might lie upstream of both low AT pO2 and inflammation in obesity. These results suggest novel approaches to treat the dysfunctional AT found in obesity.


Journal of Clinical Investigation | 2014

FGF21 is an endocrine signal of protein restriction

Thomas Laeger; Tara M. Henagan; Diana C. Albarado; Leanne M. Redman; George A. Bray; Robert C. Noland; Heike Münzberg; Susan M. Hutson; Thomas W. Gettys; Michael W. Schwartz; Christopher D. Morrison

Enhanced fibroblast growth factor 21 (FGF21) production and circulation has been linked to the metabolic adaptation to starvation. Here, we demonstrated that hepatic FGF21 expression is induced by dietary protein restriction, but not energy restriction. Circulating FGF21 was increased 10-fold in mice and rats fed a low-protein (LP) diet. In these animals, liver Fgf21 expression was increased within 24 hours of reduced protein intake. In humans, circulating FGF21 levels increased dramatically following 28 days on a LP diet. LP-induced increases in FGF21 were associated with increased phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the liver, and both baseline and LP-induced serum FGF21 levels were reduced in mice lacking the eIF2α kinase general control nonderepressible 2 (GCN2). Finally, while protein restriction altered food intake, energy expenditure, and body weight gain in WT mice, FGF21-deficient animals did not exhibit these changes in response to a LP diet. These and other data demonstrate that reduced protein intake underlies the increase in circulating FGF21 in response to starvation and a ketogenic diet and that FGF21 is required for behavioral and metabolic responses to protein restriction. FGF21 therefore represents an endocrine signal of protein restriction, which acts to coordinate metabolism and growth during periods of reduced protein intake.


American Journal of Physiology-endocrinology and Metabolism | 2010

Skeletal muscle NAMPT is induced by exercise in humans

Sheila R. Costford; Sudip Bajpeyi; Magdalena Pasarica; Diana C. Albarado; Shantele C. Thomas; Hui Xie; Timothy S. Church; Sharon A. Jubrias; Kevin E. Conley; Steven R. Smith

In mammals, nicotinamide phosphoribosyltransferase (NAMPT) is responsible for the first and rate-limiting step in the conversion of nicotinamide to nicotinamide adenine dinucleotide (NAD+). NAD+ is an obligate cosubstrate for mammalian sirtuin-1 (SIRT1), a deacetylase that activates peroxisome proliferator-activated receptor-gamma coactivator-1alpha (PGC-1alpha), which in turn can activate mitochondrial biogenesis. Given that mitochondrial biogenesis is activated by exercise, we hypothesized that exercise would increase NAMPT expression, as a potential mechanism leading to increased mitochondrial content in muscle. A cross-sectional analysis of human subjects showed that athletes had about a twofold higher skeletal muscle NAMPT protein expression compared with sedentary obese, nonobese, and type 2 diabetic subjects (P < 0.05). NAMPT protein correlated with mitochondrial content as estimated by complex III protein content (R(2) = 0.28, P < 0.01), MRS-measured maximal ATP synthesis (R(2) = 0.37, P = 0.002), and Vo(2max) (R(2) = 0.63, P < 0.0001). In an exercise intervention study, NAMPT protein increased by 127% in sedentary nonobese subjects after 3 wk of exercise training (P < 0.01). Treatment of primary human myotubes with forskolin, a cAMP signaling pathway activator, resulted in an approximately 2.5-fold increase in NAMPT protein expression, whereas treatment with ionomycin had no effect. Activation of AMPK via AICAR resulted in an approximately 3.4-fold increase in NAMPT mRNA (P < 0.05) as well as modest increases in NAMPT protein (P < 0.05) and mitochondrial content (P < 0.05). These results demonstrate that exercise increases skeletal muscle NAMPT expression and that NAMPT correlates with mitochondrial content. Further studies are necessary to elucidate the pathways regulating NAMPT as well as its downstream effects.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Insights into transcription enhancer factor 1 (TEF-1) activity from the solution structure of the TEA domain

Asokan Anbanandam; Diana C. Albarado; Catherine T. Nguyen; Georg Halder; Xiaolian Gao; Sudha Veeraraghavan

Transcription enhancer factor 1 is essential for cardiac, skeletal, and smooth muscle development and uses its N-terminal TEA domain (TEAD) to bind M-CAT elements. Here, we present the first structure of TEAD and show that it is a three-helix bundle with a homeodomain fold. Structural data reveal how TEAD binds DNA. Using structure-function correlations, we find that the L1 loop is essential for cooperative loading of TEAD molecules on to tandemly duplicated M-CAT sites. Furthermore, using a microarray chip-based assay, we establish that known binding sites of the full-length protein are only a subset of DNA elements recognized by TEAD. Our results provide a model for understanding the regulation of genome-wide gene expression during development by TEA/ATTS family of transcription factors.


Scientific Reports | 2017

Low protein-induced increases in FGF21 drive UCP1-dependent metabolic but not thermoregulatory endpoints

Cristal M. Hill; Thomas Laeger; Diana C. Albarado; David H. McDougal; Hans-Rudolf Berthoud; Heike Münzberg; Christopher D. Morrison

Dietary protein restriction increases adipose tissue uncoupling protein 1 (UCP1), energy expenditure and food intake, and these effects require the metabolic hormone fibroblast growth factor 21 (FGF21). Here we test whether the induction of energy expenditure during protein restriction requires UCP1, promotes a resistance to cold stress, and is dependent on the concomitant hyperphagia. Wildtype, Ucp1-KO and Fgf21-KO mice were placed on control and low protein (LP) diets to assess changes in energy expenditure, food intake and other metabolic endpoints. Deletion of Ucp1 blocked LP-induced increases in energy expenditure and food intake, and exacerbated LP-induced weight loss. While LP diet increased energy expenditure and Ucp1 expression in an FGF21-dependent manner, neither LP diet nor the deletion of Fgf21 influenced sensitivity to acute cold stress. Finally, LP-induced energy expenditure occurred even in the absence of hyperphagia. Increased energy expenditure is a primary metabolic effect of dietary protein restriction, and requires both UCP1 and FGF21 but is independent of changes in food intake. However, the FGF21-dependent increase in UCP1 and energy expenditure by LP has no effect on the ability to acutely respond to cold stress, suggesting that LP-induced increases in FGF21 impact metabolic but not thermogenic endpoints.


Journal of Biological Chemistry | 2014

Inactivation of C/ebp homologous protein driven immune-metabolic interactions exacerbate obesity and adipose tissue leukocytosis

Ryan W. Grant; Kim Y. Nguyen; Anthony Ravussin; Diana C. Albarado; Yun-Hee Youm; Vishwa Deep Dixit

Background: C/ebp homologous protein contributes to ER stress-induced inflammatory cytokine secretion and apoptosis. Results: Loss of Chop increases obesity, insulin resistance, and adipose tissue leukocytosis and inflammation. Conclusion: ER stress signaling through Chop is necessary for adaptation to a high fat diet. Significance: Although in obesity ER stress may impair metabolic health, inactivation of Chop promotes obesity-associated inflammation. Successful adaptation to periods of chronic caloric excess is a highly coordinated event that is critical to the survival and propagation of species. Transcription factor C/ebp homologous protein (Chop) is thought to be an important molecular mediator that integrates nutrient signals to endoplasmic reticulum (ER) stress and innate immune activation. Given that aberrant ER stress response is implicated in inducing metabolic inflammation and insulin resistance, we hypothesized that ER stress target gene Chop integrates immune and metabolic systems to adapt to chronic positive energy balance. Here we report that inactivation of Chop in mice fed a high fat diet led to significant increase in obesity caused by a reduction in energy expenditure without any change in food intake. Importantly, ablation of Chop does not induce metabolically healthy obesity, because Chop-deficient mice fed a high fat diet had increased hepatic steatosis with significantly higher insulin resistance. Quantification of adipose tissue leukocytosis revealed that elimination of Chop during obesity led to substantial increase in number of adipose tissue T and B lymphocytes. In addition, deficiency of Chop led to increase in total number of myeloid subpopulations like neutrophils and F4/80+ adipose tissue macrophages without any alterations in the frequency of M1- or M2-like adipose tissue macrophages. Further investigation of inflammatory mechanisms revealed that ablation of Chop increases the sensitivity of macrophages to inflammasome-induced activation of IL-β in macrophages. Our findings indicate that regulated expression of Chop during obesity is critical for adaptation to chronic caloric excess and maintenance of energy homeostasis via integration of metabolic and immune systems.


Metabolism-clinical and Experimental | 2016

Hepatic autophagy contributes to the metabolic response to dietary protein restriction

Tara M. Henagan; Thomas Laeger; Alexandra Navard; Diana C. Albarado; Robert C. Noland; Krisztian Stadler; Carrie M. Elks; David H. Burk; Christopher D. Morrison

Autophagy is an essential cellular response which acts to release stored cellular substrates during nutrient restriction, and particularly plays a key role in the cellular response to amino acid restriction. However, there has been limited work testing whether the induction of autophagy is required for adaptive metabolic responses to dietary protein restriction in the whole animal. Here, we found that moderate dietary protein restriction led to a series of metabolic changes in rats, including increases in food intake and energy expenditure, the downregulation of hepatic fatty acid synthesis gene expression and reduced markers of hepatic mitochondrial number. Importantly, these effects were also associated with an induction of hepatic autophagy. To determine if the induction of autophagy contributes to these metabolic effects, we tested the metabolic response to dietary protein restriction in BCL2-AAA mice, which bear a genetic mutation that impairs autophagy induction. Interestingly, BCL2-AAA mice exhibit exaggerated responses in terms of both food intake and energy expenditure, whereas the effects of protein restriction on hepatic metabolism were significantly blunted. These data demonstrate that restriction of dietary protein is sufficient to trigger hepatic autophagy, and that disruption of autophagy significantly alters both hepatic and whole animal metabolic response to dietary protein restriction.


Journal of Molecular Biology | 2016

A Potential Structural Switch for Regulating DNA-Binding by TEAD Transcription Factors.

Dong-Sun Lee; Clemens Vonrhein; Diana C. Albarado; C.S. Raman; Sudha Veeraraghavan

TEA domain (TEAD) transcription factors are essential for the normal development of eukaryotes and are the downstream effectors of the Hippo tumor suppressor pathway. Whereas our earlier work established the three-dimensional structure of the highly conserved DNA-binding domain using solution NMR spectroscopy, the structural basis for regulating the DNA-binding activity remains unknown. Here, we present the X-ray crystallographic structure and activity of a TEAD mutant containing a truncated L1 loop, ΔL1 TEAD DBD. Unexpectedly, the three-dimensional structure of the ΔL1 TEAD DBD reveals a helix-swapped homodimer wherein helix 1 is swapped between monomers. Furthermore, each three-helix bundle in the domain-swapped dimer is a structural homolog of MYB-like domains. Our investigations of the DNA-binding activity reveal that although the formation of the three-helix bundle by the ΔL1 TEAD DBD is sufficient for binding to an isolated M-CAT-like DNA element, multimeric forms are deficient for cooperative binding to tandemly duplicated elements, indicating that the L1 loop contributes to the DNA-binding activity of TEAD. These results suggest that switching between monomeric and domain-swapped forms may regulate DNA selectivity of TEAD proteins.


Frontiers in Endocrinology | 2017

Quantifying Biochemical Alterations in Brown and Subcutaneous White Adipose Tissues of Mice Using Fourier Transform Infrared Widefield Imaging

Ebrahim Aboualizadeh; Owen T. Carmichael; Ping He; Diana C. Albarado; Christopher D. Morrison; Carol J. Hirschmugl

Stimulating increased thermogenic activity in adipose tissue is an important biological target for obesity treatment, and label-free imaging techniques with the potential to quantify stimulation-associated biochemical changes to the adipose tissue are highly sought after. In this study, we used spatially resolved Fourier transform infrared (FTIR) imaging to quantify biochemical changes caused by cold exposure in the brown and subcutaneous white adipose tissues (BAT and s-WAT) of 6 week-old C57BL6 mice exposed to 30°C (N = 5), 24°C (N = 5), and 10°C (N = 5) conditions for 10 days. Fat exposed to colder temperatures demonstrated greater thermogenic activity as indicated by increased messenger RNA expression levels of a panel of thermogenic marker genes including uncoupling protein 1 (UCP-1) and Dio2. Protein to lipid ratio, calculated from the ratio of the integrated area from 1,600 to 1,700 cm−1 (amide I) to the integrated area from 2,830 to 2,980 cm−1 (saturated lipids), was elevated in 10°C BAT and s-WAT compared to 24°C (p = 0.004 and p < 0.0001) and 30°C (p = 0.0033 and p < 0.0001). Greater protein to lipid ratio was associated with greater UCP-1 expression level in the BAT (p = 0.021) and s-WAT (p = 0.032) and greater Dio2 expression in s-WAT (p = 0.033). The degree of unsaturation, calculated from the ratio of the integrated area from 2,992 to 3,020 cm−1 (unsaturated lipids) to the integrated area from 2,830 to 2,980 cm−1 (saturated lipids), showed stepwise decreases going from colder-exposed to warmer-exposed BAT. Complementary 1H NMR measurements confirmed the findings from this ratio in BAT. Principal component analysis applied to FTIR spectra revealed pronounced differences in overall spectral characteristics between 30, 24, and 10°C BAT and s-WAT. Spatially resolved FTIR imaging is a promising technique to quantify cold-induced biochemical changes in BAT and s-WAT in a label-free manner.


Cell Metabolism | 2013

Canonical Nlrp3 inflammasome links systemic low grade inflammation to functional decline in aging

Yun-Hee Youm; Ryan W. Grant; Laura R. McCabe; Diana C. Albarado; Kim Y. Nguyen; Anthony Ravussin; Paul J. Pistell; Susan Newman; Renee T. Carter; Amanda Laque; Heike Münzberg; Clifford J. Rosen; Donald K. Ingram; J. Michael Salbaum; Vishwa Deep Dixit

Collaboration


Dive into the Diana C. Albarado's collaboration.

Top Co-Authors

Avatar

Christopher D. Morrison

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar

Thomas Laeger

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar

Heike Münzberg

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar

Anthony Ravussin

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David H. Burk

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar

Hans-Rudolf Berthoud

Pennington Biomedical Research Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge