Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nienke E. Verbeek is active.

Publication


Featured researches published by Nienke E. Verbeek.


PLOS ONE | 2009

Gene-Network Analysis Identifies Susceptibility Genes Related to Glycobiology in Autism

Bert van der Zwaag; Lude Franke; Martin Poot; Ron Hochstenbach; Henk A. Spierenburg; Jacob Vorstman; Emma van Daalen; Maretha V. de Jonge; Nienke E. Verbeek; Eva H. Brilstra; Ruben van 't Slot; Roel A. Ophoff; Michael A. van Es; Hylke M. Blauw; Jan H. Veldink; Jacobine E. Buizer-Voskamp; Frits A. Beemer; Leonard H. van den Berg; Cisca Wijmenga; Hans Kristian Ploos van Amstel; Herman van Engeland; J. Peter H. Burbach; Wouter G. Staal

The recent identification of copy-number variation in the human genome has opened up new avenues for the discovery of positional candidate genes underlying complex genetic disorders, especially in the field of psychiatric disease. One major challenge that remains is pinpointing the susceptibility genes in the multitude of disease-associated loci. This challenge may be tackled by reconstruction of functional gene-networks from the genes residing in these loci. We applied this approach to autism spectrum disorder (ASD), and identified the copy-number changes in the DNA of 105 ASD patients and 267 healthy individuals with Illumina Humanhap300 Beadchips. Subsequently, we used a human reconstructed gene-network, Prioritizer, to rank candidate genes in the segmental gains and losses in our autism cohort. This analysis highlighted several candidate genes already known to be mutated in cognitive and neuropsychiatric disorders, including RAI1, BRD1, and LARGE. In addition, the LARGE gene was part of a sub-network of seven genes functioning in glycobiology, present in seven copy-number changes specifically identified in autism patients with limited co-morbidity. Three of these seven copy-number changes were de novo in the patients. In autism patients with a complex phenotype and healthy controls no such sub-network was identified. An independent systematic analysis of 13 published autism susceptibility loci supports the involvement of genes related to glycobiology as we also identified the same or similar genes from those loci. Our findings suggest that the occurrence of genomic gains and losses of genes associated with glycobiology are important contributors to the development of ASD.


Journal of Medical Genetics | 2013

Exome sequencing identifies DYNC2H1 mutations as a common cause of asphyxiating thoracic dystrophy (Jeune syndrome) without major polydactyly, renal or retinal involvement

Miriam Schmidts; Heleen H. Arts; Ernie M.H.F. Bongers; Zhimin Yap; Machteld M. Oud; Dinu Antony; Lonneke Duijkers; Richard D. Emes; Jim Stalker; Jan-Bart L Yntema; Vincent Plagnol; Alexander Hoischen; Christian Gilissen; Elisabeth Forsythe; Ekkehart Lausch; Joris A. Veltman; Nel Roeleveld; Andrea Superti-Furga; Anna Kutkowska-Kazmierczak; Erik-Jan Kamsteeg; Nursel Elcioglu; Merel C van Maarle; Luitgard Graul-Neumann; Koenraad Devriendt; Sarah F. Smithson; Diana Wellesley; Nienke E. Verbeek; Raoul C. M. Hennekam; Hülya Kayserili; Peter J. Scambler

Background Jeune asphyxiating thoracic dystrophy (JATD) is a rare, often lethal, recessively inherited chondrodysplasia characterised by shortened ribs and long bones, sometimes accompanied by polydactyly, and renal, liver and retinal disease. Mutations in intraflagellar transport (IFT) genes cause JATD, including the IFT dynein-2 motor subunit gene DYNC2H1. Genetic heterogeneity and the large DYNC2H1 gene size have hindered JATD genetic diagnosis. Aims and methods To determine the contribution to JATD we screened DYNC2H1 in 71 JATD patients JATD patients combining SNP mapping, Sanger sequencing and exome sequencing. Results and conclusions We detected 34 DYNC2H1 mutations in 29/71 (41%) patients from 19/57 families (33%), showing it as a major cause of JATD especially in Northern European patients. This included 13 early protein termination mutations (nonsense/frameshift, deletion, splice site) but no patients carried these in combination, suggesting the human phenotype is at least partly hypomorphic. In addition, 21 missense mutations were distributed across DYNC2H1 and these showed some clustering to functional domains, especially the ATP motor domain. DYNC2H1 patients largely lacked significant extra-skeletal involvement, demonstrating an important genotype–phenotype correlation in JATD. Significant variability exists in the course and severity of the thoracic phenotype, both between affected siblings with identical DYNC2H1 alleles and among individuals with different alleles, which suggests the DYNC2H1 phenotype might be subject to modifier alleles, non-genetic or epigenetic factors. Assessment of fibroblasts from patients showed accumulation of anterograde IFT proteins in the ciliary tips, confirming defects similar to patients with other retrograde IFT machinery mutations, which may be of undervalued potential for diagnostic purposes.


American Journal of Medical Genetics | 2009

A co-segregating microduplication of chromosome 15q11.2 pinpoints two risk genes for autism spectrum disorder.

Bert van der Zwaag; Wouter G. Staal; Ron Hochstenbach; Martin Poot; Henk A. Spierenburg; Maretha V. de Jonge; Nienke E. Verbeek; Ruben van 't Slot; Michael A. van Es; Frank J. T. Staal; Christine M. Freitag; Jacobine E. Buizer-Voskamp; Marcel R. Nelen; Leonard H. van den Berg; Hans Kristian Ploos van Amstel; Herman van Engeland; J. Peter H. Burbach

High resolution genomic copy‐number analysis has shown that inherited and de novo copy‐number variations contribute significantly to autism pathology, and that identification of small chromosomal aberrations related to autism will expedite the discovery of risk genes involved. Here, we report a microduplication of chromosome 15q11.2, spanning only four genes, co‐segregating with autism in a Dutch pedigree, identified by SNP microarray analysis, and independently confirmed by FISH and MLPA analysis. Quantitative RT‐PCR analysis revealed over 70% increase in peripheral blood mRNA levels for the four genes present in the duplicated region in patients, and RNA in situ hybridization on mouse embryonic and adult brain sections revealed that two of the four genes, CYFIP1 and NIPA1, were highly expressed in the developing mouse brain. These findings point towards a contribution of microduplications at chromosome 15q11.2 to autism, and highlight CYFIP1 and NIPA1 as autism risk genes functioning in axonogenesis and synaptogenesis. Thereby, these findings further implicate defects in dosage‐sensitive molecular control of neuronal connectivity in autism. However, the prevalence of this microduplication in patient samples was statistically not significantly different from control samples (0.94% in patients vs. 0.42% controls, P = 0.247), which suggests that our findings should be interpreted with caution and indicates the need for studies that include large numbers of control subjects to ascertain the impact of these changes on a population scale.


Neurogenetics | 2011

Social responsiveness scale-aided analysis of the clinical impact of copy number variations in autism

Emma van Daalen; Chantal Kemner; Nienke E. Verbeek; Bert van der Zwaag; Trijntje Dijkhuizen; Patrick Rump; Renske H. Houben; Ruben van 't Slot; Maretha V. de Jonge; Wouter G. Staal; Frits A. Beemer; Jacob Vorstman; J. Peter H. Burbach; Hans Kristian Ploos van Amstel; Ron Hochstenbach; Eva H. Brilstra; Martin Poot

Recent array-based studies have detected a wealth of copy number variations (CNVs) in patients with autism spectrum disorders (ASD). Since CNVs also occur in healthy individuals, their contributions to the patient’s phenotype remain largely unclear. In a cohort of children with symptoms of ASD, diagnosis of the index patient using ADOS-G and ADI-R was performed, and the Social Responsiveness Scale (SRS) was administered to the index patients, both parents, and all available siblings. CNVs were identified using SNP arrays and confirmed by FISH or array CGH. To evaluate the clinical significance of CNVs, we analyzed three families with multiple affected children (multiplex) and six families with a single affected child (simplex) in which at least one child carried a CNV with a brain-transcribed gene. CNVs containing genes that participate in pathways previously implicated in ASD, such as the phosphoinositol signaling pathway (PIK3CA, GIRDIN), contactin-based networks of cell communication (CNTN6), and microcephalin (MCPH1) were found not to co-segregate with ASD phenotypes. In one family, a loss of CNTN5 co-segregated with disease. This indicates that most CNVs may by themselves not be sufficient to cause ASD, but still may contribute to the phenotype by additive or epistatic interactions with inherited (transmitted) mutations or non-genetic factors. Our study extends the scope of genome-wide CNV profiling beyond de novo CNVs in sporadic patients and may aid in uncovering missing heritability in genome-wide screening studies of complex psychiatric disorders.


Brain | 2017

Genetic and phenotypic heterogeneity suggest therapeutic implications in SCN2A-related disorders

Markus Wolff; Katrine Johannesen; Ulrike B. S. Hedrich; Silvia Masnada; Guido Rubboli; Elena Gardella; Gaetan Lesca; Dorothée Ville; Mathieu Milh; Laurent Villard; Alexandra Afenjar; Sandra Chantot-Bastaraud; Cyril Mignot; Caroline Lardennois; Caroline Nava; Niklas Schwarz; Marion Gerard; Laurence Perrin; Diane Doummar; Stéphane Auvin; Maria J Miranda; Maja Hempel; Eva H. Brilstra; N.V.A.M. Knoers; Nienke E. Verbeek; Marjan van Kempen; Kees P. J. Braun; Grazia M.S. Mancini; Saskia Biskup; Konstanze Hörtnagel

Mutations in SCN2A, a gene encoding the voltage-gated sodium channel Nav1.2, have been associated with a spectrum of epilepsies and neurodevelopmental disorders. Here, we report the phenotypes of 71 patients and review 130 previously reported patients. We found that (i) encephalopathies with infantile/childhood onset epilepsies (≥3 months of age) occur almost as often as those with an early infantile onset (<3 months), and are thus more frequent than previously reported; (ii) distinct phenotypes can be seen within the late onset group, including myoclonic-atonic epilepsy (two patients), Lennox-Gastaut not emerging from West syndrome (two patients), and focal epilepsies with an electrical status epilepticus during slow sleep-like EEG pattern (six patients); and (iii) West syndrome constitutes a common phenotype with a major recurring mutation (p.Arg853Gln: two new and four previously reported children). Other known phenotypes include Ohtahara syndrome, epilepsy of infancy with migrating focal seizures, and intellectual disability or autism without epilepsy. To assess the response to antiepileptic therapy, we retrospectively reviewed the treatment regimen and the course of the epilepsy in 66 patients for which well-documented medical information was available. We find that the use of sodium channel blockers was often associated with clinically relevant seizure reduction or seizure freedom in children with early infantile epilepsies (<3 months), whereas other antiepileptic drugs were less effective. In contrast, sodium channel blockers were rarely effective in epilepsies with later onset (≥3 months) and sometimes induced seizure worsening. Regarding the genetic findings, truncating mutations were exclusively seen in patients with late onset epilepsies and lack of response to sodium channel blockers. Functional characterization of four selected missense mutations using whole cell patch-clamping in tsA201 cells-together with data from the literature-suggest that mutations associated with early infantile epilepsy result in increased sodium channel activity with gain-of-function, characterized by slowing of fast inactivation, acceleration of its recovery or increased persistent sodium current. Further, a good response to sodium channel blockers clinically was found to be associated with a relatively small gain-of-function. In contrast, mutations in patients with late-onset forms and an insufficient response to sodium channel blockers were associated with loss-of-function effects, including a depolarizing shift of voltage-dependent activation or a hyperpolarizing shift of channel availability (steady-state inactivation). Our clinical and experimental data suggest a correlation between age at disease onset, response to sodium channel blockers and the functional properties of mutations in children with SCN2A-related epilepsy.


Nature Genetics | 2014

De novo CCND2 mutations leading to stabilization of cyclin D2 cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome

Ghayda M. Mirzaa; David A. Parry; Andrew E. Fry; Kristin A Giamanco; Jeremy Schwartzentruber; Megan R. Vanstone; Clare V. Logan; Nicola Roberts; Colin A Johnson; Shawn Singh; Stanislav Kholmanskikh; Carissa Adams; Rebecca D. Hodge; Robert F. Hevner; David T. Bonthron; Kees P. J. Braun; Laurence Faivre; Jean-Baptiste Rivière; Judith St-Onge; Karen W. Gripp; Grazia M.S. Mancini; Ki Pang; Elizabeth Sweeney; Hilde Van Esch; Nienke E. Verbeek; Dagmar Wieczorek; Michelle Steinraths; Jacek Majewski; Kym M. Boycott; Daniela T. Pilz

Activating mutations in genes encoding phosphatidylinositol 3-kinase (PI3K)-AKT pathway components cause megalencephaly-polymicrogyria-polydactyly-hydrocephalus syndrome (MPPH, OMIM 603387). Here we report that individuals with MPPH lacking upstream PI3K-AKT pathway mutations carry de novo mutations in CCND2 (encoding cyclin D2) that are clustered around a residue that can be phosphorylated by glycogen synthase kinase 3β (GSK-3β). Mutant CCND2 was resistant to proteasomal degradation in vitro compared to wild-type CCND2. The PI3K-AKT pathway modulates GSK-3β activity, and cells from individuals with PIK3CA, PIK3R2 or AKT3 mutations showed similar CCND2 accumulation. CCND2 was expressed at higher levels in brains of mouse embryos expressing activated AKT3. In utero electroporation of mutant CCND2 into embryonic mouse brains produced more proliferating transfected progenitors and a smaller fraction of progenitors exiting the cell cycle compared to cells electroporated with wild-type CCND2. These observations suggest that cyclin D2 stabilization, caused by CCND2 mutation or PI3K-AKT activation, is a unifying mechanism in PI3K-AKT–related megalencephaly syndromes.


Neurology | 2012

PRRT2 phenotypes and penetrance of paroxysmal kinesigenic dyskinesia and infantile convulsions

Rianne van Vliet; Guido J. Breedveld; Johanneke de Rijk-van Andel; Eva H. Brilstra; Nienke E. Verbeek; Corien C. Verschuuren-Bemelmans; Maartje Boon; Johnny Samijn; Karin E. M. Diderich; Ingrid van de Laar; Ben A. Oostra; Vincenzo Bonifati; Anneke Maat-Kievit

Objective: To describe the phenotypes and penetrance of paroxysmal kinesigenic dyskinesia (PKD), a movement disorder characterized by attacks of involuntary movements occurring after sudden movements, infantile convulsion and choreoathetosis (ICCA) syndrome, and benign familial infantile convulsions (BFIC), caused by PRRT2 mutations. Methods: We performed clinical and genetic studies in 3 large families with ICCA, 2 smaller families with PKD, and 4 individuals with sporadic PKD. Migraine was also present in several individuals. Results: We detected 3 different PRRT2 heterozygous mutations: the recurrent p.Arg217Profs*8 mutation, previously reported, was identified in 2 families with ICCA, 2 families with PKD, and one individual with sporadic PKD; one novel missense mutation (p.Ser275Phe) was detected in the remaining family with ICCA; and one novel truncating mutation (p.Arg217*) was found in one individual with sporadic PKD. In the 2 remaining individuals with sporadic PKD, PRRT2 mutations were not detected. Importantly, PRRT2 mutations did not cosegregate with febrile convulsions or with migraine. The estimated penetrance of PRRT2 mutations was 61%, if only the PKD phenotype was considered; however, if infantile convulsions were also taken into account, the penetrance was nearly complete. Considering our findings and those reported in literature, 23 PRRT2 mutations explain ∼56% of the families analyzed. Conclusions: PRRT2 mutations are the major cause of PKD or ICCA, but they do not seem to be involved in the etiology of febrile convulsions and migraine. The identification of PRRT2 as a major gene for the PKD-ICCA-BFIC spectrum allows better disease classification, molecular confirmation of the clinical diagnosis, and genetic testing and counseling.


Human Mutation | 2015

De Novo Mutations in the Motor Domain of KIF1A Cause Cognitive Impairment, Spastic Paraparesis, Axonal Neuropathy, and Cerebellar Atrophy

Jae-Ran Lee; Myriam Srour; Doyoun Kim; Fadi F. Hamdan; So Hee Lim; Catherine Brunel-Guitton; Jean Claude Décarie; Elsa Rossignol; Grant A. Mitchell; Allison Schreiber; Rocio Moran; Keith Van Haren; Randal Richardson; Joost Nicolai; Karin M E J Oberndorff; Justin D. Wagner; Kym M. Boycott; Elisa Rahikkala; Nella Junna; Henna Tyynismaa; Inge Cuppen; Nienke E. Verbeek; Connie Stumpel; M.A.A.P. Willemsen; Sonja de Munnik; Guy A. Rouleau; Eunjoon Kim; Erik Jan Kamsteeg; Tjitske Kleefstra; Jacques L. Michaud

KIF1A is a neuron‐specific motor protein that plays important roles in cargo transport along neurites. Recessive mutations in KIF1A were previously described in families with spastic paraparesis or sensory and autonomic neuropathy type‐2. Here, we report 11 heterozygous de novo missense mutations (p.S58L, p.T99M, p.G102D, p.V144F, p.R167C, p.A202P, p.S215R, p.R216P, p.L249Q, p.E253K, and p.R316W) in KIF1A in 14 individuals, including two monozygotic twins. Two mutations (p.T99M and p.E253K) were recurrent, each being found in unrelated cases. All these de novo mutations are located in the motor domain (MD) of KIF1A. Structural modeling revealed that they alter conserved residues that are critical for the structure and function of the MD. Transfection studies suggested that at least five of these mutations affect the transport of the MD along axons. Individuals with de novo mutations in KIF1A display a phenotype characterized by cognitive impairment and variable presence of cerebellar atrophy, spastic paraparesis, optic nerve atrophy, peripheral neuropathy, and epilepsy. Our findings thus indicate that de novo missense mutations in the MD of KIF1A cause a phenotype that overlaps with, while being more severe, than that associated with recessive mutations in the same gene.


Neurogenetics | 2013

Clinical and genetic aspects of PCDH19-related epilepsy syndromes and the possible role of PCDH19 mutations in males with autism spectrum disorders

J. J. T. van Harssel; Sarah Weckhuysen; M.J.A. van Kempen; Katia Hardies; Nienke E. Verbeek; C. de Kovel; Wb Gunning; E van Daalen; M.V. de Jonge; A. Jansen; R. Vermeulen; W.F.M. Arts; H. Verhelst; A. Fogarasi; J. F. de Rijk-van Andel; A. Kelemen; Dick Lindhout; P. De Jonghe; B. P. C. Koeleman; Arvid Suls; Eva H. Brilstra

Epilepsy and mental retardation limited to females (EFMR), caused by PCDH19 mutations, has a variable clinical expression that needs further exploration. Onset of epilepsy may be provoked by fever and can resemble Dravet syndrome. Furthermore, transmitting males have no seizures, but are reported to have rigid personalities suggesting possible autism spectrum disorders (ASD). Therefore, this study aimed to determine the phenotypic spectrum associated with PCDH19 mutations in Dravet-like and EFMR female patients and in males with ASD. We screened 120 females suffering from Dravet-like epilepsy, 136 females with EFMR features and 20 males with ASD. Phenotypes and genotypes of the PCDH19 mutation carriers were compared with those of 125 females with EFMR reported in the literature. We report 15 additional patients with a PCDH19 mutation. Review of clinical data of all reported patients showed that the clinical picture of EFMR is heterogeneous, but epilepsy onset in infancy, fever sensitivity and occurrence of seizures in clusters are key features. Seizures remit in the majority of patients during teenage years. Intellectual disability and behavioural disturbances are common. Fifty percent of all mutations are missense mutations, located in the extracellular domains only. Truncating mutations have been identified in all protein domains. One ASD proband carried one missense mutation predicted to have a deleterious effect, suggesting that ASD in males can be associated with PCDH19 mutations.


European Journal of Neuroscience | 2011

Nav1.1 dysfunction in genetic epilepsy with febrile seizures-plus or Dravet syndrome

Linda Volkers; Kristopher M. Kahlig; Nienke E. Verbeek; Joost H.G. Das; Marjan van Kempen; Hans Stroink; Paul B. Augustijn; Onno van Nieuwenhuizen; Dick Lindhout; Alfred L. George; Bobby P. C. Koeleman; Martin B. Rook

Relatively few SCN1A mutations associated with genetic epilepsy with febrile seizures‐plus (GEFS+) and Dravet syndrome (DS) have been functionally characterized. In contrast to GEFS+, many mutations detected in DS patients are predicted to have complete loss of function. However, functional consequences are not immediately apparent for DS missense mutations. Therefore, we performed a biophysical analysis of three SCN1A missense mutations (R865G, R946C and R946H) we detected in six patients with DS. Furthermore, we compared the functionality of the R865G DS mutation with that of a R859H mutation detected in a GEFS+ patient; the two mutations reside in the same voltage sensor domain of Nav1.1. The four mutations were co‐expressed with β1 and β2 subunits in tsA201 cells, and characterized using the whole‐cell patch clamp technique. The two DS mutations, R946C and R946H, were nonfunctional. However, the novel voltage sensor mutants R859H (GEFS+) and R865G (DS) produced sodium current densities similar to those in wild‐type channels. Both mutants had negative shifts in the voltage dependence of activation, slower recovery from inactivation, and increased persistent current. Only the GEFS+ mutant exhibited a loss of function in voltage‐dependent channel availability. Our results suggest that the R859H mutation causes GEFS+ by a mixture of biophysical defects in Nav1.1 gating. Interestingly, while loss of Nav1.1 function is common in DS, the R865G mutation may cause DS by overall gain‐of‐function defects.

Collaboration


Dive into the Nienke E. Verbeek's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge