Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dinesh Patil is active.

Publication


Featured researches published by Dinesh Patil.


international electron devices meeting | 2005

Scaling, power, and the future of CMOS

Mark Horowitz; Elad Alon; Dinesh Patil; Samuel Naffziger; Rajesh Kumar; Kerry Bernstein

This paper briefly reviews the forces that caused the power problem, the solutions that were applied, and what the solutions tell us about the problem. As systems became more power constrained, optimizing the power became more critical; viewing power reduction from an optimization perspective provides valuable insights. Section III describes these insights in more detail, including why Vdd and Vth have stopped scaling. Section IV describes some of the low power techniques that have been used in the past in the context of the optimization framework. This framework also makes it easy to see the impact of variability, which is discussed in more detail in section V along with the adaptive mechanisms that have been proposed and deployed to minimize the energy cost. Section VI describes possible strategies for dealing with the slowdown in gate energy scaling, and the final section concludes by discussing the implications of these strategies for device designers


Operations Research | 2005

Digital Circuit Optimization via Geometric Programming

Stephen P. Boyd; Seung-Jean Kim; Dinesh Patil; Mark Horowitz

This paper concerns a method for digital circuit optimization based on formulating the problem as a geometric program (GP) or generalized geometric program (GGP), which can be transformed to a convex optimization problem and then very efficiently solved. We start with a basic gate scaling problem, with delay modeled as a simple resistor-capacitor (RC) time constant, and then add various layers of complexity and modeling accuracy, such as accounting for differing signal fall and rise times, and the effects of signal transition times. We then consider more complex formulations such as robust design over corners, multimode design, statistical design, and problems in which threshold and power supply voltage are also variables to be chosen. Finally, we look at the detailed design of gates and interconnect wires, again using a formulation that is compatible with GP or GGP.


Optics Express | 2011

Ultra-efficient 10Gb/s hybrid integrated silicon photonic transmitter and receiver

Xuezhe Zheng; Dinesh Patil; Jon Lexau; Frankie Liu; Guoliang Li; Hiren Thacker; Ying Luo; Ivan Shubin; Jieda Li; Jin Yao; Po Dong; Dazeng Feng; Mehdi Asghari; Thierry Pinguet; Attila Mekis; Philip Amberg; Michael Dayringer; Jon Gainsley; Hesam Fathi Moghadam; Elad Alon; Kannan Raj; Ron Ho; John E. Cunningham; Ashok V. Krishnamoorthy

Using low parasitic microsolder bumping, we hybrid integrated efficient photonic devices from different platforms with advanced 40 nm CMOS VLSI circuits to build ultra-low power silicon photonic transmitters and receivers for potential applications in high performance inter/intra-chip interconnects. We used a depletion racetrack ring modulator with improved electro-optic efficiency to allow stepper optical photo lithography for reduced fabrication complexity. Integrated with a low power cascode 2 V CMOS driver, the hybrid silicon photonic transmitter achieved better than 7 dB extinction ratio for 10 Gbps operation with a record low power consumption of 1.35 mW. A received power penalty of about 1 dB was measured for a BER of 10(-12) compared to an off-the-shelf lightwave LiNOb3 transmitter, which comes mostly from the non-perfect extinction ratio. Similarly, a Ge waveguide detector fabricated using 130 nm SOI CMOS process was integrated with low power VLSI circuits using hybrid bonding. The all CMOS hybrid silicon photonic receiver achieved sensitivity of -17 dBm for a BER of 10(-12) at 10 Gbps, consuming an ultra-low power of 3.95 mW (or 395 fJ/bit in energy efficiency). The scalable hybrid integration enables continued photonic device improvements by leveraging advanced CMOS technologies with maximum flexibility, which is critical for developing ultra-low power high performance photonic interconnects for future computing systems.


IEEE Journal of Selected Topics in Quantum Electronics | 2011

Progress in Low-Power Switched Optical Interconnects

Ashok V. Krishnamoorthy; K.W. Goossen; W. Y. Jan; Xuezhe Zheng; Ron Ho; Guoliang Li; R.G. Rozier; Frankie Liu; Dinesh Patil; Jon Lexau; Herb Schwetman; Dazeng Feng; Mehdi Asghari; Thierry Pinguet; John E. Cunningham

Optical links have successfully displaced electrical links when their aggregated bandwidth-distance product exceeds ~100 Gb/s-m because their link energy per bit per unit distance is lower. Optical links will continue to be adopted at distances of 1 m and below if link power falls below 1 pJ/bit/m. Providing optical links directly to a switching/routing chip can significantly improve the switched energy/bit. We present an early experimental switched CMOS-vertical-cavity surface-emitting laser (VCSEL) system operating at Gigabit Ethernet line rates that achieves a switched interconnect energy of less than 19 pJ/bit for a fully nonblocking network with 16 ports and an aggregate capacity of 20 Gb/s/port. The CMOS-VCSEL switch achieves an optical bandwidth density of 37 Gb/s/mm2 even when operating at a modest line rate of 1.25 Gb/s and is capable of scaling to much higher peak bandwidth densities (~350 Gb/s/mm2) with 5-10 pJ/switched bit. We also review a silicon photonic system design that will lower link energies to 300 fJ/bit, while providing multiterabits per second per square millimeter bandwidth densities. This system will ultimately provide switched optical interconnect at less than a picojoule per switched bit and computer/router system energies of tens of picojoule per bit. We review progress made to date on the silicon photonic components and analyze an energy and bandwidth-density roadmap for future advances toward these goals.


IEEE Journal of Solid-state Circuits | 2012

10-Gbps, 5.3-mW Optical Transmitter and Receiver Circuits in 40-nm CMOS

Frankie Liu; Dinesh Patil; Jon Lexau; Philip Amberg; Michael Dayringer; Jonathan Gainsley; Hesam Fathi Moghadam; Xuezhe Zheng; John E. Cunningham; Ashok V. Krishnamoorthy; Elad Alon; Ron Ho

We describe transmitter and receiver circuits for a 10-Gbps single-ended optical link in a 40-nm CMOS technology. The circuits are bonded using low-parasitic micro-solder bumps to silicon photonic devices on a 130-nm SOI platform. The transmitter drives oval resonant ring modulators with a 2-V swing and employs static thermal tuners to compensate for optical device process variations. The receiver is based on a transimpedance amplifier (TIA) with 4-kΩ gain and designed for an input power of - 15 dBm, a photodiode responsivity of 0.7 A/W, and an input extinction ratio of 6 dB. It employs a pair of interleaved clocked sense-amplifiers for voltage slicing and uses a DLL with phase adjustment for centering the clock in the data eye. Periodic calibration allows for adjustment of both voltage and timing margins. At 10 Gbps, the transmitter extinction ratio exceeds 7 dB and, excluding thermal tuning and laser power, it consumes 1.35 mW. At the same datarate, the receiver consumes 3.95 mW. On-chip PRBS generators and checkers with 231-1 sequences confirm operation at a BER better than 10-12.


Optics Express | 2010

A sub-picojoule-per-bit CMOS photonic receiver for densely integrated systems

Xuezhe Zheng; Frankie Liu; Dinesh Patil; Hiren Thacker; Ying Luo; Thierry Pinguet; Attila Mekis; Jin Yao; Guoliang Li; Jing Shi; Kannan Raj; Jon Lexau; Elad Alon; Ron Ho; John E. Cunningham; Ashok V. Krishnamoorthy

We report ultra-low-power (690fJ/bit) operation of an optical receiver consisting of a germanium-silicon waveguide detector intimately integrated with a receiver circuit and embedded in a clocked digital receiver. We show a wall-plug power efficiency of 690microW/Gbps for the photonic receiver made of a 130nm SOI CMOS Ge waveguide detector integrated to a 90nm Si CMOS receiver circuit. The hybrid CMOS photonic receiver achieved a sensitivity of -18.9dBm at 5Gbps for BER of 10(-12). Enabled by a unique low-overhead bias refresh scheme, the receiver operates without the need for DC balanced transmission. Small signal measurements of the CMOS Ge waveguide detector showed a 3dB bandwidth of 10GHz at 1V of reverse bias, indicating that further increases in transmission rate and reductions of energy-per-bit will be possible.


Journal of Lightwave Technology | 2012

Ultralow Power 80 Gb/s Arrayed CMOS Silicon Photonic Transceivers for WDM Optical Links

Xuezhe Zheng; Frankie Liu; Jon Lexau; Dinesh Patil; Guoliang Li; Ying Luo; Hiren Thacker; Ivan Shubin; Jin Yao; Kannan Raj; Ron Ho; John E. Cunningham; Ashok V. Krishnamoorthy

Silicon photonic interconnects offer a promising solution to meeting the ever growing demand for more efficient I/O bandwidth density. We report an ultralow power 80 Gb/s arrayed silicon photonic transceiver for dense, large bandwidth inter/intrachip interconnects. Low parasitic microsolder-based hybrid bonding enables close integration of silicon photonic array devices optimized on a 130 nm silicon-on-insulator CMOS platform with CMOS very large scale integration circuits optimized on a 40 nm silicon CMOS platform to achieve unprecedented energy efficiency. The hybrid CMOS transceiver consists of eight 10 Gb/s channels with a total consumed power below 6 mW/channel. The eight-channel wavelength division multiplexing transmitter array using cascaded tunable ring modulators demonstrated better than 100 fJ/bit energy efficiency for 10 Gb/s operation excluding the laser power and tuning power, while the eight-channel receiver array using broadband Ge p-i-n waveguide detectors show sensitivity of better than -15 dBm for a bit error rate of 10-12 at a data rate of 10 Gb/s with energy efficiency of better than 500 fJ/bit.


symposium on computer arithmetic | 2007

Robust Energy-Efficient Adder Topologies

Dinesh Patil; Omid Azizi; Mark Horowitz; Ron Ho; Rajesh Ananthraman

In this paper we explore the relationship between adder topology and energy efficiency. We compare the energy-delay tradeoff curves of selected 32- bit adder topologies, to determine how architectural features and design techniques affect energy efficiency. Optimizing different adders for the supply and threshold voltages, and transistor sizing, we show that topologies with the least number of logic stages having an average fanin of two per stage, and fewest wires are most energy efficient. While a design with fully custom sizes can be extremely tedious to layout, we show that custom sizing can be used as a guide to group different gates in the design, resulting in a manageable layout overhead without significant loss of energy efficiency.


IEEE Transactions on Electron Devices | 2007

Power Optimization for SRAM and Its Scaling

E. Morifuji; Dinesh Patil; Mark Horowitz; Yoshio Nishi

With technology scaling, there is a strong demand for smaller cell size, higher speed, and lower power in SRAMs. In addition, there are severe constraints for reliable read-and-write operations in the presence of increasing random variations that significantly degrade the noise margin. To understand these tradeoffs clearly and find a power-delay optimal solution for scaled SRAM, sequential quadratic programming is applied for optimizing 6-T SRAM for the first time. The use of analytical device models for transistor currents and formulate all the cell-operation requirements as constraints in an optimization problem. Our results suggest that, for optimal SRAM cell design, neither the supply voltage (Vdd) nor the gate length (Lg) scales, due to the need for an adequate noise margin amid leakage and threshold variability and relatively low dynamic activity of SRAM. This is true even with technology scaling. The cell area continues to scale despite the nonscaling gate length (Lg) with only a 7% area overhead at the 22-nm technology node as compared to simple scaling, at which point a 3-D structure is needed to continue the area-scaling trend. The suppression of gate leakage helps to reduce the power in ultralow-power SRAM, where subthreshold leakage is minimized at the cost of increase in cell area


asian solid state circuits conference | 2009

Circuits for silicon photonics on a “macrochip”

Ron Ho; Jon Lexau; Frankie Liu; Dinesh Patil; Robert Hopkins; Elad Alon; Nathaniel Pinckney; Philip Amberg; Xuezhe Zheng; John E. Cunningham; Ashok V. Krishnamoorthy

Recent advances in silicon photonics bring significant benefits to “macrochip” grids made of arrayed chips. Such configurations have global interconnects long enough to benefit from the high speed, low energy, and high bandwidth density of optics. In this paper we consider the constraints of large macrochip systems, and explore modulator drivers and photodetector receivers that match those constraints. We show measured results from a recent 90 nm testchip intended to mate with optical components.

Collaboration


Dive into the Dinesh Patil's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elad Alon

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge