Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dinh Loc Duong is active.

Publication


Featured researches published by Dinh Loc Duong.


Nature | 2012

Probing graphene grain boundaries with optical microscopy

Dinh Loc Duong; Gang Hee Han; Seung Mi Lee; Fethullah Güneş; Eun Sung Kim; Sung Tae Kim; Heetae Kim; Quang Huy Ta; Kang Pyo So; Seok Jun Yoon; Seung Jin Chae; Young Woo Jo; Min Ho Park; Sang Hoon Chae; Seong Chu Lim; Jae-Young Choi; Young Hee Lee

Grain boundaries in graphene are formed by the joining of islands during the initial growth stage, and these boundaries govern transport properties and related device performance. Although information on the atomic rearrangement at graphene grain boundaries can be obtained using transmission electron microscopy and scanning tunnelling microscopy, large-scale information regarding the distribution of graphene grain boundaries is not easily accessible. Here we use optical microscopy to observe the grain boundaries of large-area graphene (grown on copper foil) directly, without transfer of the graphene. This imaging technique was realized by selectively oxidizing the underlying copper foil through graphene grain boundaries functionalized with O and OH radicals generated by ultraviolet irradiation under moisture-rich ambient conditions: selective diffusion of oxygen radicals through OH-functionalized defect sites was demonstrated by density functional calculations. The sheet resistance of large-area graphene decreased as the graphene grain sizes increased, but no strong correlation with the grain size of the copper was revealed, in contrast to a previous report. Furthermore, the influence of graphene grain boundaries on crack propagation (initialized by bending) and termination was clearly visualized using our technique. Our approach can be used as a simple protocol for evaluating the grain boundaries of other two-dimensional layered structures, such as boron nitride and exfoliated clays.


Nature Materials | 2013

Transferred wrinkled Al2O3 for highly stretchable and transparent graphene–carbon nanotube transistors

Sang Hoon Chae; Woo Jong Yu; Jung Jun Bae; Dinh Loc Duong; David Perello; Hye Yun Jeong; Quang Huy Ta; Thuc Hue Ly; Quoc An Vu; Minhee Yun; Xiangfeng Duan; Young Hee Lee

Despite recent progress in producing transparent and bendable thin-film transistors using graphene and carbon nanotubes, the development of stretchable devices remains limited either by fragile inorganic oxides or polymer dielectrics with high leakage current. Here we report the fabrication of highly stretchable and transparent field-effect transistors combining graphene/single-walled carbon nanotube (SWCNT) electrodes and a SWCNT-network channel with a geometrically wrinkled inorganic dielectric layer. The wrinkled Al2O3 layer contained effective built-in air gaps with a small gate leakage current of 10(-13) A. The resulting devices exhibited an excellent on/off ratio of ~10(5), a high mobility of ~40 cm(2) V(-1) s(-1) and a low operating voltage of less than 1 V. Importantly, because of the wrinkled dielectric layer, the transistors retained performance under strains as high as 20% without appreciable leakage current increases or physical degradation. No significant performance loss was observed after stretching and releasing the devices for over 1,000 times. The sustainability and performance advances demonstrated here are promising for the adoption of stretchable electronics in a wide variety of future applications.


Advanced Materials | 2011

Ultra‐Transparent, Flexible Single‐walled Carbon Nanotube Non‐volatile Memory Device with an Oxygen‐decorated Graphene Electrode

Woo Jong Yu; Sang Hoon Chae; Si Young Lee; Dinh Loc Duong; Young Hee Lee

The next-generation electronic systems are expected to be light and portable for applications in wearable computers, fl exible displays, fl exible integrated circuit (IC)cards, fl exible potable solar cells, and artifi cial bodies. Flexibility and transparency are the key ingredients for these next generation electronic systems. Several studies have been executed to realize transparency and fl exibility using carbon nanotubes, [ 1–8 ] inorganics, [ 9–11 ] and organics [ 12–16 ] in transistors and memory devices. Most studies have focused on the transistor, in which fl exibility, stretchability, and transparency have been realized to some degree. [ 1–14 ]


Advanced Materials | 2015

Seamless Stitching of Graphene Domains on Polished Copper (111) Foil

Van Luan Nguyen; Bong Gyu Shin; Dinh Loc Duong; Sung Tae Kim; David J. Perello; Young Jin Lim; Qinghong Yuan; Feng Ding; Hu Young Jeong; Hyeon Suk Shin; Seung Mi Lee; Sang Hoon Chae; Quoc An Vu; Seung Hee Lee; Young Hee Lee

Seamless stitching of graphene domains on polished copper (111) is proved clearly not only at atomic scale by scanning tunnelling microscopy (STM) and transmission electron micoscopy (TEM), but also at the macroscale by optical microscopy after UV-treatment. Using this concept of seamless stitching, synthesis of 6 cm × 3 cm monocrystalline graphene without grain boundaries on polished copper (111) foil is possible, which is only limited by the chamber size.


ACS Nano | 2011

Role of anions in the AuCl3-doping of carbon nanotubes.

Soo Min Kim; Ki Kang Kim; Young Woo Jo; Min Ho Park; Seung Jin Chae; Dinh Loc Duong; Cheol Woong Yang; Jing Kong; Young Hee Lee

The doping/dedoping mechanism of carbon nanotubes (CNTs) with AuCl(3) has been investigated with regard to the roles of cations and anions. Contrary to the general belief that CNTs are p-doped through the reduction of cationic Au(3+) to Au(0), we observed that chlorine anions play a more important role than Au cations in doping. To estimate the effects of Cl and Au on CNTs, the CNT film was dedoped as a function of the annealing temperature (100-700 °C) under an Ar ambient and was confirmed by the sheet resistance change and the presence of a G-band in the Raman spectra. The X-ray photoelectron spectroscopy (XPS) analysis revealed that the doping level of the CNT film was strongly related to the amount of adsorbed chlorine atoms. Annealing at temperatures up to 200 °C did not change the amount of adsorbed Cl atoms on the CNTs, and the CNT film was stable under ambient conditions. Alternatively, Cl atoms started to dissociate from CNTs at 300 °C, and the stability of the film was degraded. Furthermore, the change in the amount of Cl atoms in CNTs was inversely proportional to the change in the sheet resistance. Our observations of the Cl adsorption, either directly or mediated by an Au precursor on the CNT surface, are congruent with the previous theoretical prediction.


Advanced Materials | 2014

Charge Transport in Polycrystalline Graphene: Challenges and Opportunities

Aron W. Cummings; Dinh Loc Duong; Van Luan Nguyen; Dinh Van Tuan; Jani Kotakoski; Jose Eduardo Barrios Vargas; Young Hee Lee; Stephan Roche

Graphene has attracted significant interest both for exploring fundamental science and for a wide range of technological applications. Chemical vapor deposition (CVD) is currently the only working approach to grow graphene at wafer scale, which is required for industrial applications. Unfortunately, CVD graphene is intrinsically polycrystalline, with pristine graphene grains stitched together by disordered grain boundaries, which can be either a blessing or a curse. On the one hand, grain boundaries are expected to degrade the electrical and mechanical properties of polycrystalline graphene, rendering the material undesirable for many applications. On the other hand, they exhibit an increased chemical reactivity, suggesting their potential application to sensing or as templates for synthesis of one-dimensional materials. Therefore, it is important to gain a deeper understanding of the structure and properties of graphene grain boundaries. Here, we review experimental progress on identification and electrical and chemical characterization of graphene grain boundaries. We use numerical simulations and transport measurements to demonstrate that electrical properties and chemical modification of graphene grain boundaries are strongly correlated. This not only provides guidelines for the improvement of graphene devices, but also opens a new research area of engineering graphene grain boundaries for highly sensitive electro-biochemical devices.


ACS Nano | 2010

Transparent organic p-dopant in carbon nanotubes: bis(trifluoromethanesulfonyl)imide.

Soo Min Kim; Young Woo Jo; Ki Kang Kim; Dinh Loc Duong; Hyeon-Jin Shin; Jong Hun Han; Jae-Young Choi; Jing Kong; Young Hee Lee

We propose bis(trifluoromethanesulfonyl)imide [(CF(3)SO(2))(2)N](-) (TFSI) as a transparent strong electron-withdrawing p-type dopant in carbon nanotubes (CNTs). The conventional p-dopant, AuCl(3), has several drawbacks, such as hygroscopic effect, formation of Au clusters, decrease in transmittance, and high cost in spite of the significant increase in conductivity. TFSI is converted from bis(trifluoromethanesulfonyl)amine (TFSA) by accepting electrons from CNTs, subsequently losing a proton as a characteristic of a Brønsted acid, and has an inductive effect from atoms with high electronegativity, such as halogen, oxygen, and nitrogen. TFSI produced a similar improvement in conductivity to AuCl(3), while maintaining high thermal stability, and no appreciable change in transmittance with no cluster formation. The effectiveness of TFSI was compared with that of other derivatives.


ACS Nano | 2017

van der Waals Layered Materials: Opportunities and Challenges

Dinh Loc Duong; Seok Joon Yun; Young Hee Lee

Since graphene became available by a scotch tape technique, a vast class of two-dimensional (2D) van der Waals (vdW) layered materials has been researched intensively. What is more intriguing is that the well-known physics and chemistry of three-dimensional (3D) bulk materials are often irrelevant, revealing exotic phenomena in 2D vdW materials. By further constructing heterostructures of these materials in the planar and vertical directions, which can be easily achieved via simple exfoliation techniques, numerous quantum mechanical devices have been demonstrated for fundamental research and technological applications. It is, therefore, necessary to review the special features in 2D vdW materials and to discuss the remaining issues and challenges. Here, we review the vdW materials library, technology relevance, and specialties of vdW materials covering the vdW interaction, strong Coulomb interaction, layer dependence, dielectric screening engineering, work function modulation, phase engineering, heterostructures, stability, growth issues, and the remaining challenges.


Applied Physics Letters | 2015

Thin-layer black phosphorus/GaAs heterojunction p-n diodes

Pascal Gehring; Roberto Urcuyo; Dinh Loc Duong; Marko Burghard; Klaus Kern

Owing to its high carrier mobility and thickness-tunable direct band gap, black phosphorus emerges as a promising component of optoelectronic devices. Here, we evaluate the device characteristics of p-n heterojunction diodes wherein thin black phosphorus layers are interfaced with an underlying, highly n-doped GaAs substrate. The p-n heterojunctions exhibit close-to-ideal diode behavior at low bias, while under illumination they display a photoresponse that is evenly distributed over the entire junction area, with an external quantum efficiency of up to 10% at zero bias. Moreover, the observed maximum open circuit voltage of 0.6 V is consistent with the band gap estimated for a black phosphorus sheet with a thickness on the order of 10 nm. Further analysis reveals that the device performance is limited by the structural quality of the black phosphorus surface.


ACS Nano | 2015

Chemically Modulated Band Gap in Bilayer Graphene Memory Transistors with High On/Off Ratio.

Si Young Lee; Dinh Loc Duong; Quoc An Vu; Youngjo Jin; Philip Kim; Young Hee Lee

We report a chemically conjugated bilayer graphene field effect transistor demonstrating a high on/off ratio without significant degradation of the on-current and mobility. This was realized by introducing environmentally stable benzyl viologen as an electron-donating group and atmospheric dopants as an electron-withdrawing group, which were used as dopants for the bottom and top of the bilayer graphene, respectively. A high mobility of ∼3100 cm(2) V(-1) s(-1) with a high on/off ratio of 76.1 was obtained at room temperature without significant degradation of the on-current. This is attributed to low charge scattering due to physisorbed dopants without provoking sp(3) structural disorders. By utilizing our band-gap-opened bilayer graphene, excellent nonvolatile memory switching behavior was demonstrated with a clear program/erase state by applying pulse gate bias. The initial program/erase current ratio of ∼34.5 was still retained at higher than 10 even after 10(4) s.

Collaboration


Dive into the Dinh Loc Duong's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Seung Mi Lee

Korea Research Institute of Standards and Science

View shared research outputs
Top Co-Authors

Avatar

Si Young Lee

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Hee Han

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Woo Jong Yu

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Young Woo Jo

Sungkyunkwan University

View shared research outputs
Researchain Logo
Decentralizing Knowledge