Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominic P. Del Re is active.

Publication


Featured researches published by Dominic P. Del Re.


Circulation Research | 2006

The Rac and Rho Hall of Fame: A Decade of Hypertrophic Signaling Hits

Joan Heller Brown; Dominic P. Del Re; Mark A. Sussman

Over the last decade, the Rho family GTPases have gained considerable recognition as powerful regulators of actin cytoskeletal organization. As with many high profile signal transducers, these molecules soon attracted the attention of the cardiovascular research community. Shortly thereafter, two prominent members known as RhoA and Rac1 were linked to agonist-induced gene expression and myofilament organization using the isolated cardiomyocyte cell model. Subsequent creation of transgenic mouse lines provided evidence for more complex roles of RhoA and Rac1 signaling. Clues from in vitro and in vivo studies suggest the involvement of numerous downstream targets of RhoA and Rac1 signaling including serum response factor, NF-&kgr;B, and other transcription factors, myofilament proteins, ion channels, and reactive oxygen species generation. Which of these contribute to the observed phenotypic effects of enhanced RhoA and Rac activation in vivo remain to be determined. Current research efforts with a more translational focus have used statins or Rho kinase blockers to assess RhoA and Rac1 as targets for interventional approaches to blunt hypertrophy or heart failure. Generally, salutary effects on remodeling and ischemic damage are observed, but the broad specificity and multiple cellular targets for these drugs within the myocardium demands caution in interpretation. In this review, we assess the evolution of knowledge related to Rac1 and RhoA in the context of hypertrophy and heart failure and highlight the direction that future exploration will lead.


Nature Medicine | 2013

Mst1 inhibits autophagy by promoting the interaction between Beclin1 and Bcl-2

Yasuhiro Maejima; Shiori Kyoi; Peiyong Zhai; Tong Liu; Hong Li; Andreas Ivessa; Sebastiano Sciarretta; Dominic P. Del Re; Daniela Zablocki; Chiao Po Hsu; Dae-Sik Lim; Mitsuaki Isobe; Junichi Sadoshima

Yasuhiro Maejima1,4, Shiori Kyoi1, Peiyong Zhai1, Tong Liu2, Hong Li2, Andreas Ivessa1, Sebastiano Sciarretta1, Dominic P. Del Re1, Daniela K. Zablocki1, Chiao-Po Hsu3, Dae-Sik Lim5, Mitsuaki Isobe4, and Junichi Sadoshima1,6 1Cardiovascular Research Institute, Department of Cell Biology and Molecular Medicine, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, NJ 07103Here we show that Mst1, a proapoptotic kinase, impairs protein quality control mechanisms in the heart through inhibition of autophagy. Stress-induced activation of Mst1 in cardiomyocytes promoted accumulation of p62 and aggresome formation, accompanied by the disappearance of autophagosomes. Mst1 phosphorylated the Thr108 residue in the BH3 domain of Beclin1, which enhanced the interaction between Beclin1 and Bcl-2 and/or Bcl-xL, stabilized the Beclin1 homodimer, inhibited the phosphatidylinositide 3-kinase activity of the Atg14L-Beclin1-Vps34 complex and suppressed autophagy. Furthermore, Mst1-induced sequestration of Bcl-2 and Bcl-xL by Beclin1 allows Bax to become active, thereby stimulating apoptosis. Mst1 promoted cardiac dysfunction in mice subjected to myocardial infarction by inhibiting autophagy, associated with increased levels of Thr108-phosphorylated Beclin1. Moreover, dilated cardiomyopathy in humans was associated with increased levels of Thr108-phosphorylated Beclin1 and signs of autophagic suppression. These results suggest that Mst1 coordinately regulates autophagy and apoptosis by phosphorylating Beclin1 and consequently modulating a three-way interaction among Bcl-2 proteins, Beclin1 and Bax.


Journal of Biological Chemistry | 2007

RhoA/Rho kinase up-regulate Bax to activate a mitochondrial death pathway and induce cardiomyocyte apoptosis.

Dominic P. Del Re; Joan Heller Brown

The small G-protein RhoA regulates the actin cytoskeleton, and its involvement in cell proliferation has also been established. In contrast, little is known about whether RhoA participates in cell survival or apoptosis. In cardiomyocytes in vitro, RhoA induces hypertrophic cell growth and gene expression. In vivo, however, RhoA expression leads to development of heart failure (Sah, V. P., Minamisawa, S., Tam, S. P., Wu, T. H., Dorn, G. W., Ross, J. Jr., Chien, K. R., and Brown, J. H. (1999) J. Clin. Investig. 103, 1627–1634), a condition widely associated with cardiomyocyte apoptosis. We demonstrate here that adenoviral overexpression of activated RhoA in cardiomyocytes induces hypertrophy, which transitions over time to apoptosis, as evidenced by caspase activation and nucleosomal DNA fragmentation. The Rho kinase inhibitors Y-27632 and HA-1077 and expression of a dominant negative Rho kinase block these responses. Caspase-9, but not caspase-8, is activated, and its inhibition prevents DNA fragmentation, consistent with involvement of a mitochondrial death pathway. Interestingly, RhoA expression induces a 3–4-fold up-regulation of the proapoptotic Bcl-2 family protein Bax. RhoA also increases levels of activated Bax and the amount of Bax protein localized at mitochondria. Bax mRNA is increased by RhoA, indicating transcriptional regulation, and the ability of a dominant negative p53 mutant to block Bax up-regulation implicates p53 in this response. The involvement of Bax in RhoA-induced apoptosis was examined by treatment with a Bax-inhibitory peptide, which was found to significantly attenuate DNA fragmentation and caspase-9 and -3 activation. The dominant negative p53 also prevents RhoA-induced apoptosis. We conclude that RhoA/Rho kinase activation up-regulates Bax through p53 to induce a mitochondrial death pathway and cardiomyocyte apoptosis.


Journal of Biological Chemistry | 2008

Focal Adhesion Kinase as a RhoA-activable Signaling Scaffold Mediating Akt Activation and Cardiomyocyte Protection

Dominic P. Del Re; Joan Heller Brown

RhoA a small G-protein that has an established role in cell growth and in regulation of the actin cytoskeleton. Far less is known about whether RhoA can modulate cell fate. We previously reported that sustained RhoA activation induces cardiomyocyte apoptosis (Del Re, D. P., Miyamoto, S., and Brown, J. H. (2007) J. Biol. Chem. 282, 8069–8078). Here we demonstrate that less chronic RhoA activation affords a survival advantage, protecting cardiomyocytes from apoptotic insult induced by either hydrogen peroxide treatment or glucose deprivation. Under conditions where RhoA is protective, we observe Rho kinase-dependent cytoskeletal rearrangement and activation of focal adhesion kinase (FAK). Activation of endogenous cardiomyocyte FAK leads to its increased association with the p85 regulatory subunit of phosphatidylinositol-3-kinase (PI3K) and to concomitant activation of Akt. Treatment of isolated perfused hearts with sphingosine 1-phosphate recapitulates this response. The pathway by which RhoA mediates cardiomyocyte Akt activation is demonstrated to require Rho kinase, FAK and PI3K, but not Src, based on studies with pharmacological inhibitors (Y-27632, LY294002, PF271 and PP2) and inhibitory protein expression (FAK-related nonkinase). Inhibition of RhoA-mediated Akt activation at any of these steps, including inhibition of FAK, prevents RhoA from protecting cardiomyocytes against apoptotic insult. We further demonstrate that stretch of cardiomyocytes, which activates endogenous RhoA, induces the aforementioned signaling pathway, providing a physiologic context in which RhoA-mediated FAK phosphorylation can activate PI3K and Akt. We suggest that RhoA-mediated effects on the cardiomyocyte cytoskeleton provide a novel mechanism for protection from apoptosis.


Nature Communications | 2014

A functional interaction between Hippo-YAP signalling and FoxO1 mediates the oxidative stress response

Dan Shao; Peiyong Zhai; Dominic P. Del Re; Sebastiano Sciarretta; Norikazu Yabuta; Hiroshi Nojima; Dae-Sik Lim; Duojia Pan; Junichi Sadoshima

The Hippo pathway is an evolutionarily conserved regulator of organ size and tumorigenesis that negatively regulates cell growth and survival. Here we report that YAP, the terminal effector of the Hippo pathway, interacts with FoxO1 in the nucleus of cardiomyocytes, thereby promoting survival. YAP and FoxO1 form a functional complex on the promoters of the catalase and MnSOD antioxidant genes and stimulate their transcription. Inactivation of YAP, induced by Hippo activation, suppresses FoxO1 activity and decreases antioxidant gene expression, suggesting that Hippo signaling modulates the FoxO1-mediated antioxidant response. In the setting of ischemia/reperfusion (I/R) in the heart, activation of Hippo antagonizes YAP-FoxO1, leading to enhanced oxidative stress-induced cell death through downregulation of catalase and MnSOD. Conversely, restoration of YAP activity protects against I/R injury. These results suggest that YAP is a nuclear co-factor of FoxO1 and that the Hippo pathway negatively affects cardiomyocyte survival by inhibiting the function of YAP-FoxO1.


Journal of Biological Chemistry | 2013

Yes-associated Protein Isoform 1 (Yap1) Promotes Cardiomyocyte Survival and Growth to Protect against Myocardial Ischemic Injury

Dominic P. Del Re; Yanfei Yang; Noritsugu Nakano; Jaeyeaon Cho; Peiyong Zhai; Takanobu Yamamoto; Nailing Zhang; Norikazu Yabuta; Hiroshi Nojima; Duojia Pan; Junichi Sadoshima

Background: Yap1 regulates cardiac development, yet the function of Yap1 in the adult heart remains unknown. Results: Yap1 promotes cardiomyocyte survival, hypertrophy, and proliferation and protects against chronic myocardial infarction (MI). Conclusion: Yap1 is critical for basal heart homeostasis, and Yap1 deficiency exacerbates myocardial injury. Significance: Increasing cardiomyocyte survival and proliferation may afford protection in vivo against MI injury. Yap1 is an important regulator of cardiomyocyte proliferation and embryonic heart development, yet the function of endogenous Yap1 in the adult heart remains unknown. We studied the role of Yap1 in maintaining basal cardiac function and in modulating injury after chronic myocardial infarction (MI). Cardiomyocyte-specific homozygous inactivation of Yap1 in the postnatal heart (YapF/FCre) elicited increased myocyte apoptosis and fibrosis, dilated cardiomyopathy, and premature death. Heterozygous deletion (Yap+/FCre) did not cause an overt cardiac phenotype compared with YapF/F control mice at base line. In response to stress (MI), nuclear Yap1 was found selectively in the border zone and not in the remote area of the heart. After chronic MI (28 days), Yap+/FCre mice had significantly increased myocyte apoptosis and fibrosis, with attenuated compensatory cardiomyocyte hypertrophy, and further impaired function versus Yap+/F control mice. Studies in isolated cardiomyocytes demonstrated that Yap1 expression is sufficient to promote increased cell size and hypertrophic gene expression and protected cardiomyocytes against H2O2-induced cell death, whereas Yap1 depletion attenuated phenylephrine-induced hypertrophy and augmented apoptosis. Finally, we observed a significant decrease in cardiomyocyte proliferation in Yap+/FCre hearts compared with Yap+/F controls after MI and demonstrated that Yap1 is sufficient to promote cardiomyocyte proliferation in isolated cardiomyocytes. Our findings suggest that Yap1 is critical for basal heart homeostasis and that Yap1 deficiency exacerbates injury in response to chronic MI.


Journal of Clinical Investigation | 2010

Proapoptotic Rassf1A/Mst1 signaling in cardiac fibroblasts is protective against pressure overload in mice

Dominic P. Del Re; Takahisa Matsuda; Peiyong Zhai; Shumin Gao; Geoffrey J. Clark; Louise van der Weyden; Junichi Sadoshima

Mammalian sterile 20-like kinase 1 (Mst1) is a mammalian homolog of Drosophila Hippo, the master regulator of cell death, proliferation, and organ size in flies. It is the chief component of the mammalian Hippo pathway and promotes apoptosis and inhibits compensatory cardiac hypertrophy, playing a critical role in mediating heart failure. How Mst1 is regulated, however, remains unclear. Using genetically altered mice in which expression of the tumor suppressor Ras-association domain family 1 isoform A (Rassf1A) was modulated in a cell type-specific manner, we demonstrate here that Rassf1A is an endogenous activator of Mst1 in the heart. Although the Rassf1A/Mst1 pathway promoted apoptosis in cardiomyocytes, thereby playing a detrimental role, the same pathway surprisingly inhibited fibroblast proliferation and cardiac hypertrophy through both cell-autonomous and autocrine/paracrine mechanisms, playing a protective role during pressure overload. In cardiac fibroblasts, the Rassf1A/Mst1 pathway negatively regulated TNF-α, a key mediator of hypertrophy, fibrosis, and resulting cardiac dysfunction. These results suggest that the functional consequence of activating the proapoptotic Rassf1A/Mst1 pathway during pressure overload is cell type dependent in the heart and that suppressing this mechanism in cardiac fibroblasts could be detrimental.


Journal of Clinical Investigation | 2011

RhoA protects the mouse heart against ischemia/reperfusion injury.

Sunny Yang Xiang; Davy Vanhoutte; Dominic P. Del Re; Nicole H. Purcell; Haiyun Ling; Indroneal Banerjee; Julie Bossuyt; Richard A. Lang; Yi Zheng; Scot J. Matkovich; Shigeki Miyamoto; Jeffery D. Molkentin; Gerald W. Dorn; Joan Heller Brown

The small GTPase RhoA serves as a nodal point for signaling through hormones and mechanical stretch. However, the role of RhoA signaling in cardiac pathophysiology is poorly understood. To address this issue, we generated mice with cardiomyocyte-specific conditional expression of low levels of activated RhoA (CA-RhoA mice) and demonstrated that they exhibited no overt cardiomyopathy. When challenged by in vivo or ex vivo ischemia/reperfusion (I/R), however, the CA-RhoA mice exhibited strikingly increased tolerance to injury, which was manifest as reduced myocardial lactate dehydrogenase (LDH) release and infarct size and improved contractile function. PKD was robustly activated in CA-RhoA hearts. The cardioprotection afforded by RhoA was reversed by PKD inhibition. The hypothesis that activated RhoA and PKD serve protective physiological functions during I/R was supported by several lines of evidence. In WT mice, both RhoA and PKD were rapidly activated during I/R, and blocking PKD augmented I/R injury. In addition, cardiac-specific RhoA-knockout mice showed reduced PKD activation after I/R and strikingly decreased tolerance to I/R injury, as shown by increased infarct size and LDH release. Collectively, our findings provide strong support for the concept that RhoA signaling in adult cardiomyocytes promotes survival. They also reveal unexpected roles for PKD as a downstream mediator of RhoA and in cardioprotection against I/R.


Molecular Cell | 2014

Mst1 promotes cardiac myocyte apoptosis through phosphorylation and inhibition of Bcl-xL.

Dominic P. Del Re; Takahisa Matsuda; Peiyong Zhai; Yasuhiro Maejima; Mohit Jain; Tong Liu; Hong Li; Chiao-Po Hsu; Junichi Sadoshima

The Hippo pathway, evolutionarily conserved from flies to mammals, promotes cell death and inhibits cell proliferation to regulate organ size. The core component of this cascade, Mst1 in mammalian cells, is sufficient to promote apoptosis. However, the mechanisms underlying both its activation and its ability to elicit cell death remain largely undefined. We here identify a signaling cassette in cardiac myocytes consisting of K-Ras, the scaffold RASSF1A, and Mst1 that is localized to mitochondria and promotes Mst1 activation in response to oxidative stress. Activated Mst1 phosphorylates Bcl-xL at Ser14, which resides in the BH4 domain, thereby antagonizing Bcl-xL-Bax binding. This, in turn, causes activation of Bax and subsequent mitochondria-mediated apoptotic death. Our findings demonstrate mitochondrial localization of Hippo signaling and identify Bcl-xL as a target that is directly modified to promote apoptosis.


Journal of Cardiovascular Translational Research | 2010

Revisited and Revised: Is RhoA Always a Villain in Cardiac Pathophysiology?

Shigeki Miyamoto; Dominic P. Del Re; Sunny Yang Xiang; Xia Zhao; Geir Florholmen; Joan Heller Brown

The neonatal rat ventricular myocyte model of hypertrophy has provided tremendous insight with regard to signaling pathways regulating cardiac growth and gene expression. Many mediators thus discovered have been successfully extrapolated to the in vivo setting, as assessed using genetically engineered mice and physiological interventions. Studies in neonatal rat ventricular myocytes demonstrated a role for the small G-protein RhoA and its downstream effector kinase, Rho-associated coiled-coil containing protein kinase (ROCK), in agonist-mediated hypertrophy. Transgenic expression of RhoA in the heart does not phenocopy this response, however, nor does genetic deletion of ROCK prevent hypertrophy. Pharmacologic inhibition of ROCK has effects most consistent with roles for RhoA signaling in the development of heart failure or responses to ischemic damage. Whether signals elicited downstream of RhoA promote cell death or survival and are deleterious or salutary is, however, context and cell-type dependent. The concepts discussed above are reviewed, and the hypothesis that RhoA might protect cardiomyocytes from ischemia and other insults is presented. Novel RhoA targets including phospholipid regulated and regulating enzymes (Akt, PI kinases, phospholipase C, protein kinases C and D) and serum response element-mediated transcriptional responses are considered as possible pathways through which RhoA could affect cardiomyocyte survival.

Collaboration


Dive into the Dominic P. Del Re's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shumin Gao

University of Medicine and Dentistry of New Jersey

View shared research outputs
Top Co-Authors

Avatar

Yasuhiro Maejima

Tokyo Medical and Dental University

View shared research outputs
Top Co-Authors

Avatar

Duojia Pan

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge