Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominic Rose is active.

Publication


Featured researches published by Dominic Rose.


Nucleic Acids Research | 2013

CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems

Sita J. Lange; Omer S. Alkhnbashi; Dominic Rose; Sebastian Will; Rolf Backofen

Central to Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas systems are repeated RNA sequences that serve as Cas-protein–binding templates. Classification is based on the architectural composition of associated Cas proteins, considering repeat evolution is essential to complete the picture. We compiled the largest data set of CRISPRs to date, performed comprehensive, independent clustering analyses and identified a novel set of 40 conserved sequence families and 33 potential structure motifs for Cas-endoribonucleases with some distinct conservation patterns. Evolutionary relationships are presented as a hierarchical map of sequence and structure similarities for both a quick and detailed insight into the diversity of CRISPR-Cas systems. In a comparison with Cas-subtypes, I-C, I-E, I-F and type II were strongly coupled and the remaining type I and type III subtypes were loosely coupled to repeat and Cas1 evolution, respectively. Subtypes with a strong link to CRISPR evolution were almost exclusive to bacteria; nevertheless, we identified rare examples of potential horizontal transfer of I-C and I-E systems into archaeal organisms. Our easy-to-use web server provides an automated assignment of newly sequenced CRISPRs to our classification system and enables more informed choices on future hypotheses in CRISPR-Cas research: http://rna.informatik.uni-freiburg.de/CRISPRmap.


european conference on computational biology | 2005

Non-coding RNAs in Ciona intestinalis

Kristin Missal; Dominic Rose; Peter F. Stadler

MOTIVATION The analysis of animal genomes showed that only a minute part of their DNA codes for proteins. Recent experimental results agree, however, that a large fraction of these genomes are transcribed and hence are probably functional at the RNA level. A computational survey of vertebrate genomes has predicted thousands of previously unknown ncRNAs with evolutionarily conserved secondary structures. Extending these comparative studies beyond vertebrates is difficult, however, since most ncRNAs evolve quickly at the sequence level while conserving their characteristic secondarystructures. RESULTS We report on a computational screen of structured ncRNAs in the urochordate lineage based on a comparison of the genomic data from Ciona intestinalis, Ciona savignyi and Oikopleura dioica. We predict >1000 ncRNAs with an evolutionarily conserved RNA secondary structure. Of these, about a quarter are located in introns of known protein coding sequences. A few RNA motifs can be identified as known RNAs, including approximately 300 tRNAs, some 100 snRNA genes and a few microRNAs and snoRNAs. AVAILABILITY www.bioinf.uni-leipzig.de/Publications/SUPPLEMENTS/05-008/


Nucleic Acids Research | 2009

Non-coding RNA annotation of the genome of Trichoplax adhaerens

Jana Hertel; Danielle M. de Jong; Manja Marz; Dominic Rose; Hakim Tafer; Andrea Tanzer; Bernd Schierwater; Peter F. Stadler

A detailed annotation of non-protein coding RNAs is typically missing in initial releases of newly sequenced genomes. Here we report on a comprehensive ncRNA annotation of the genome of Trichoplax adhaerens, the presumably most basal metazoan whose genome has been published to-date. Since blast identified only a small fraction of the best-conserved ncRNAs—in particular rRNAs, tRNAs and some snRNAs—we developed a semi-global dynamic programming tool, GotohScan, to increase the sensitivity of the homology search. It successfully identified the full complement of major and minor spliceosomal snRNAs, the genes for RNase P and MRP RNAs, the SRP RNA, as well as several small nucleolar RNAs. We did not find any microRNA candidates homologous to known eumetazoan sequences. Interestingly, most ncRNAs, including the pol-III transcripts, appear as single-copy genes or with very small copy numbers in the Trichoplax genome.


BMC Genomics | 2009

Homology-based annotation of non-coding RNAs in the genomes of Schistosoma mansoni and Schistosoma japonicum

Claudia S. Copeland; Manja Marz; Dominic Rose; Jana Hertel; Paul J. Brindley; Clara Isabel Bermudez Santana; Stephanie Kehr; Camille Stephan-Otto Attolini; Peter F. Stadler

BackgroundSchistosomes are trematode parasites of the phylum Platyhelminthes. They are considered the most important of the human helminth parasites in terms of morbidity and mortality. Draft genome sequences are now available for Schistosoma mansoni and Schistosoma japonicum. Non-coding RNA (ncRNA) plays a crucial role in gene expression regulation, cellular function and defense, homeostasis, and pathogenesis. The genome-wide annotation of ncRNAs is a non-trivial task unless well-annotated genomes of closely related species are already available.ResultsA homology search for structured ncRNA in the genome of S. mansoni resulted in 23 types of ncRNAs with conserved primary and secondary structure. Among these, we identified rRNA, snRNA, SL RNA, SRP, tRNAs and RNase P, and also possibly MRP and 7SK RNAs. In addition, we confirmed five miRNAs that have recently been reported in S. japonicum and found two additional homologs of known miRNAs. The tRNA complement of S. mansoni is comparable to that of the free-living planarian Schmidtea mediterranea, although for some amino acids differences of more than a factor of two are observed: Leu, Ser, and His are overrepresented, while Cys, Meth, and Ile are underrepresented in S. mansoni. On the other hand, the number of tRNAs in the genome of S. japonicum is reduced by more than a factor of four. Both schistosomes have a complete set of minor spliceosomal snRNAs. Several ncRNAs that are expected to exist in the S. mansoni genome were not found, among them the telomerase RNA, vault RNAs, and Y RNAs.ConclusionThe ncRNA sequences and structures presented here represent the most complete dataset of ncRNA from any lophotrochozoan reported so far. This data set provides an important reference for further analysis of the genomes of schistosomes and indeed eukaryotic genomes at large.


Bioinformatics | 2012

GraphClust: alignment-free structural clustering of local RNA secondary structures

Steffen Heyne; Fabrizio Costa; Dominic Rose; Rolf Backofen

Motivation: Clustering according to sequence–structure similarity has now become a generally accepted scheme for ncRNA annotation. Its application to complete genomic sequences as well as whole transcriptomes is therefore desirable but hindered by extremely high computational costs. Results: We present a novel linear-time, alignment-free method for comparing and clustering RNAs according to sequence and structure. The approach scales to datasets of hundreds of thousands of sequences. The quality of the retrieved clusters has been benchmarked against known ncRNA datasets and is comparable to state-of-the-art sequence–structure methods although achieving speedups of several orders of magnitude. A selection of applications aiming at the detection of novel structural ncRNAs are presented. Exemplarily, we predicted local structural elements specific to lincRNAs likely functionally associating involved transcripts to vital processes of the human nervous system. In total, we predicted 349 local structural RNA elements. Availability: The GraphClust pipeline is available on request. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.


RNA | 2015

Comparison of splice sites reveals that long noncoding RNAs are evolutionarily well conserved

Anne Nitsche; Dominic Rose; Mario Fasold; Kristin Reiche; Peter F. Stadler

Large-scale RNA sequencing has revealed a large number of long mRNA-like transcripts (lncRNAs) that do not code for proteins. The evolutionary history of these lncRNAs has been notoriously hard to study systematically due to their low level of sequence conservation that precludes comprehensive homology-based surveys and makes them nearly impossible to align. An increasing number of special cases, however, has been shown to be at least as old as the vertebrate lineage. Here we use the conservation of splice sites to trace the evolution of lncRNAs. We show that >85% of the human GENCODE lncRNAs were already present at the divergence of placental mammals and many hundreds of these RNAs date back even further. Nevertheless, we observe a fast turnover of intron/exon structures. We conclude that lncRNA genes are evolutionary ancient components of vertebrate genomes that show an unexpected and unprecedented evolutionary plasticity. We offer a public web service (http://splicemap.bioinf.uni-leipzig.de) that allows to retrieve sets of orthologous splice sites and to produce overview maps of evolutionarily conserved splice sites for visualization and further analysis. An electronic supplement containing the ncRNA data sets used in this study is available at http://www.bioinf.uni-leipzig.de/publications/supplements/12-001.


Genome Research | 2009

Conserved introns reveal novel transcripts in Drosophila melanogaster

Michael Hiller; Sven Findeiss; Sandro Lein; Manja Marz; Claudia Nickel; Dominic Rose; Christine Schulz; Rolf Backofen; Sonja J. Prohaska; Gunter Reuter; Peter F. Stadler

Noncoding RNAs that are-like mRNAs-spliced, capped, and polyadenylated have important functions in cellular processes. The inventory of these mRNA-like noncoding RNAs (mlncRNAs), however, is incomplete even in well-studied organisms, and so far, no computational methods exist to predict such RNAs from genomic sequences only. The subclass of these transcripts that is evolutionarily conserved usually has conserved intron positions. We demonstrate here that a genome-wide comparative genomics approach searching for short conserved introns is capable of identifying conserved transcripts with a high specificity. Our approach requires neither an open reading frame nor substantial sequence or secondary structure conservation in the surrounding exons. Thus it identifies spliced transcripts in an unbiased way. After applying our approach to insect genomes, we predict 369 introns outside annotated coding transcripts, of which 131 are confirmed by expressed sequence tags (ESTs) and/or noncoding FlyBase transcripts. Of the remaining 238 novel introns, about half are associated with protein-coding genes-either extending coding or untranslated regions or likely belonging to unannotated coding genes. The remaining 129 introns belong to novel mlncRNAs that are largely unstructured. Using RT-PCR, we verified seven of 12 tested introns in novel mlncRNAs and 11 of 17 introns in novel coding genes. The expression level of all verified mlncRNA transcripts is low but varies during development, which suggests regulation. As conserved introns indicate both purifying selection on the exon-intron structure and conserved expression of the transcript in related species, the novel mlncRNAs are good candidates for functional transcripts.


Genomics | 2008

NcDNAlign: plausible multiple alignments of non-protein-coding genomic sequences.

Dominic Rose; Jana Hertel; Kristin Reiche; Peter F. Stadler; Jörg Hackermüller

Genome-wide multiple sequence alignments (MSAs) are a necessary prerequisite for an increasingly diverse collection of comparative genomic approaches. Here we present a versatile method that generates high-quality MSAs for non-protein-coding sequences. The NcDNAlign pipeline combines pairwise BLAST alignments to create initial MSAs, which are then locally improved and trimmed. The program is optimized for speed and hence is particulary well-suited to pilot studies. We demonstrate the practical use of NcDNAlign in three case studies: the search for ncRNAs in gammaproteobacteria and the analysis of conserved noncoding DNA in nematodes and teleost fish, in the latter case focusing on the fate of duplicated ultra-conserved regions. Compared to the currently widely used genome-wide alignment program TBA, our program results in a 20- to 30-fold reduction of CPU time necessary to generate gammaproteobacterial alignments. A showcase application of bacterial ncRNA prediction based on alignments of both algorithms results in similar sensitivity, false discovery rates, and up to 100 putatively novel ncRNA structures. Similar findings hold for our application of NcDNAlign to the identification of ultra-conserved regions in nematodes and teleosts. Both approaches yield conserved sequences of unknown function, result in novel evolutionary insights into conservation patterns among these genomes, and manifest the benefits of an efficient and reliable genome-wide alignment package. The software is available under the GNU Public License at http://www.bioinf.uni-leipzig.de/Software/NcDNAlign/.


Bioinformatics | 2011

Computational discovery of human coding and non-coding transcripts with conserved splice sites

Dominic Rose; Michael Hiller; Katharina Schutt; Jörg Hackermüller; Rolf Backofen; Peter F. Stadler

MOTIVATION Long non-coding RNAs (lncRNAs) resemble protein-coding mRNAs but do not encode proteins. Most lncRNAs are under lower sequence constraints than protein-coding genes and lack conserved secondary structures, making it hard to predict them computationally. RESULTS We introduce an approach to predict spliced lncRNAs in vertebrate genomes combining comparative genomics and machine learning. It is based on detecting signatures of characteristic splice site evolution in vertebrate whole genome alignments. First, we predict individual splice sites, then assemble compatible sites into exon candidates, and finally predict multi-exon transcripts. Using a novel method to evaluate typical splice site substitution patterns that explicitly takes the species phylogeny into account, we show that individual splice sites can be accurately predicted. Since our approach relies only on predicted splice sites, it can uncover both coding and non-coding exons. We show that our predicted exons and partial transcripts are mostly non-coding and lack conserved secondary structures. These exons are of particular interest, since existing computational approaches cannot detect them. Transcriptome sequencing data indicate tissue-specific expression patterns of predicted exons and there is evidence that increasing sequencing depth and breadth will validate additional predictions. We also found a significant enrichment of predicted exons that form multi-exon transcript parts, and we experimentally validate such a novel multi-exon gene. Overall, we obtain 336 novel multi-exon transcript predictions from human intergenic regions. Our results indicate the existence of novel human transcripts that are conserved in evolution and our approach contributes to the completion of the human transcript catalog. AVAILABILITY AND IMPLEMENTATION Predicted human splice sites, exons and gene structures together with a Perl implementation of the tree-based log-odds scoring and a supplementary PDF file containing additional figures and tables are available at: http://www.bioinf.uni-leipzig.de/publications/supplements/10-010. The five experimentally confirmed partial transcript isoforms have been deposited in GenBank under accession numbers HM587422-HM587426.


Bioinformatics | 2014

BlockClust: efficient clustering and classification of non-coding RNAs from short read RNA-seq profiles.

Pavankumar Videm; Dominic Rose; Fabrizio Costa; Rolf Backofen

Summary: Non-coding RNAs (ncRNAs) play a vital role in many cellular processes such as RNA splicing, translation, gene regulation. However the vast majority of ncRNAs still have no functional annotation. One prominent approach for putative function assignment is clustering of transcripts according to sequence and secondary structure. However sequence information is changed by post-transcriptional modifications, and secondary structure is only a proxy for the true 3D conformation of the RNA polymer. A different type of information that does not suffer from these issues and that can be used for the detection of RNA classes, is the pattern of processing and its traces in small RNA-seq reads data. Here we introduce BlockClust, an efficient approach to detect transcripts with similar processing patterns. We propose a novel way to encode expression profiles in compact discrete structures, which can then be processed using fast graph-kernel techniques. We perform both unsupervised clustering and develop family specific discriminative models; finally we show how the proposed approach is scalable, accurate and robust across different organisms, tissues and cell lines. Availability: The whole BlockClust galaxy workflow including all tool dependencies is available at http://toolshed.g2.bx.psu.edu/view/rnateam/blockclust_workflow. Contact: [email protected]; [email protected] Supplementary information: Supplementary data are available at Bioinformatics online.

Collaboration


Dive into the Dominic Rose's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg Hackermüller

Helmholtz Centre for Environmental Research - UFZ

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge