Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jörg Hackermüller is active.

Publication


Featured researches published by Jörg Hackermüller.


Science | 2007

RNA Maps Reveal New RNA Classes and a Possible Function for Pervasive Transcription

Philipp Kapranov; Jill Cheng; Sujit Dike; David A. Nix; Radharani Duttagupta; Aarron T. Willingham; Peter F. Stadler; Jana Hertel; Jörg Hackermüller; Ivo L. Hofacker; Ian Bell; Evelyn Cheung; Jorg Drenkow; Erica Dumais; Sandeep Patel; Gregg A. Helt; Madhavan Ganesh; Srinka Ghosh; Antonio Piccolboni; Victor Sementchenko; Hari Tammana; Thomas R. Gingeras

Significant fractions of eukaryotic genomes give rise to RNA, much of which is unannotated and has reduced protein-coding potential. The genomic origins and the associations of human nuclear and cytosolic polyadenylated RNAs longer than 200 nucleotides (nt) and whole-cell RNAs less than 200 nt were investigated in this genome-wide study. Subcellular addresses for nucleotides present in detected RNAs were assigned, and their potential processing into short RNAs was investigated. Taken together, these observations suggest a novel role for some unannotated RNAs as primary transcripts for the production of short RNAs. Three potentially functional classes of RNAs have been identified, two of which are syntenically conserved and correlate with the expression state of protein-coding genes. These data support a highly interleaved organization of the human transcriptome.


Nature | 2010

The primary transcriptome of the major human pathogen Helicobacter pylori

Cynthia M. Sharma; Steve Hoffmann; Fabien Darfeuille; Jérémy Reignier; Sven Findeiß; Alexandra Sittka; Sandrine Chabas; Kristin Reiche; Jörg Hackermüller; Richard Reinhardt; Peter F. Stadler; Jörg Vogel

Genome sequencing of Helicobacter pylori has revealed the potential proteins and genetic diversity of this prevalent human pathogen, yet little is known about its transcriptional organization and noncoding RNA output. Massively parallel cDNA sequencing (RNA-seq) has been revolutionizing global transcriptomic analysis. Here, using a novel differential approach (dRNA-seq) selective for the 5′ end of primary transcripts, we present a genome-wide map of H. pylori transcriptional start sites and operons. We discovered hundreds of transcriptional start sites within operons, and opposite to annotated genes, indicating that complexity of gene expression from the small H. pylori genome is increased by uncoupling of polycistrons and by genome-wide antisense transcription. We also discovered an unexpected number of ∼60 small RNAs including the ε-subdivision counterpart of the regulatory 6S RNA and associated RNA products, and potential regulators of cis- and trans-encoded target messenger RNAs. Our approach establishes a paradigm for mapping and annotating the primary transcriptomes of many living species.


PLOS Computational Biology | 2009

Fast Mapping of Short Sequences with Mismatches, Insertions and Deletions Using Index Structures

Steve Hoffmann; Christian Otto; Stefan Kurtz; Cynthia M. Sharma; Philipp Khaitovich; Jörg Vogel; Peter F. Stadler; Jörg Hackermüller

With few exceptions, current methods for short read mapping make use of simple seed heuristics to speed up the search. Most of the underlying matching models neglect the necessity to allow not only mismatches, but also insertions and deletions. Current evaluations indicate, however, that very different error models apply to the novel high-throughput sequencing methods. While the most frequent error-type in Illumina reads are mismatches, reads produced by 454s GS FLX predominantly contain insertions and deletions (indels). Even though 454 sequencers are able to produce longer reads, the method is frequently applied to small RNA (miRNA and siRNA) sequencing. Fast and accurate matching in particular of short reads with diverse errors is therefore a pressing practical problem. We introduce a matching model for short reads that can, besides mismatches, also cope with indels. It addresses different error models. For example, it can handle the problem of leading and trailing contaminations caused by primers and poly-A tails in transcriptomics or the length-dependent increase of error rates. In these contexts, it thus simplifies the tedious and error-prone trimming step. For efficient searches, our method utilizes index structures in the form of enhanced suffix arrays. In a comparison with current methods for short read mapping, the presented approach shows significantly increased performance not only for 454 reads, but also for Illumina reads. Our approach is implemented in the software segemehl available at http://www.bioinf.uni-leipzig.de/Software/segemehl/.


Oncogene | 2013

MiR-130a, miR-203 and miR-205 jointly repress key oncogenic pathways and are downregulated in prostate carcinoma

Kerstin Boll; Kristin Reiche; Katharina Kasack; Nora Mörbt; A.K. Kretzschmar; Janina M. Tomm; G.W. Verhaegh; J.A. Schalken; M. von Bergen; Friedemann Horn; Jörg Hackermüller

With ∼30u2009000 deaths annually in the United States, prostate cancer (PCa) is a major oncologic disease. Here we show that the microRNAs miR-130a, miR-203 and miR-205 jointly interfere with the two major oncogenic pathways in prostate carcinoma and are downregulated in cancer tissue. Using transcriptomics we show that the microRNAs repress several gene products known to be overexpressed in this cancer. Argonaute 2 (AGO2) co-immunoprecipitation, reporter assays and western blot analysis demonstrate that the microRNAs directly target several components of the mitogen-activated protein kinase (MAPK) and androgen receptor (AR) signaling pathways, among those several AR coregulators and HRAS (Harvey rat sarcoma viral oncogene homolog), and repress signaling activity. Both pathways are central for the development of the primary tumor and in particular the progression to its incurable castration-resistant form. Reconstitution of the microRNAs in LNCaP PCa cells induce morphological changes, which resemble the effect of androgen deprivation, and jointly impair tumor cell growth by induction of apoptosis and cell cycle arrest. We therefore propose that these microRNAs jointly act as tumor suppressors in prostate carcinoma and might interfere with progression to castration resistance.


Genome Biology | 2014

A multi-split mapping algorithm for circular RNA, splicing, trans-splicing and fusion detection

Steve Hoffmann; Christian Otto; Andrea Tanzer; David Langenberger; Sabina Christ; Manfred Kunz; Lesca M. Holdt; Daniel Teupser; Jörg Hackermüller; Peter F. Stadler

Numerous high-throughput sequencing studies have focused on detecting conventionally spliced mRNAs in RNA-seq data. However, non-standard RNAs arising through gene fusion, circularization or trans-splicing are often neglected. We introduce a novel, unbiased algorithm to detect splice junctions from single-end cDNA sequences. In contrast to other methods, our approach accommodates multi-junction structures. Our method compares favorably with competing tools for conventionally spliced mRNAs and, with a gain of up to 40% of recall, systematically outperforms them on reads with multiple splits, trans-splicing and circular products. The algorithm is integrated into our mapping tool segemehl (http://www.bioinf.uni-leipzig.de/Software/segemehl/).


Molecular Biology and Evolution | 2009

Evolution of Vault RNAs

Peter F. Stadler; Julian J.-L. Chen; Jörg Hackermüller; Steve Hoffmann; Friedemann Horn; Phillip Khaitovich; Antje K. Kretzschmar; Axel Mosig; Sonja J. Prohaska; Xiaodong Qi; Katharina Schutt

Vault RNAs (vtRNAs) are small, about 100 nt long, polymerase III transcripts contained in the vault particles of eukaryotic cells. Presumably due to their enigmatic function, they have received little attention compared with most other noncoding RNA (ncRNA) families. Their poor sequence conservation makes homology search a complex and tedious task even within vertebrates. Here we report on a systematic and comprehensive analysis of this rapidly evolving class of ncRNAs in deuterostomes, providing a comprehensive collection of computationally predicted vtRNA genes. We find that all previously described vtRNAs are located at a conserved genomic locus linked to the protocadherin gene cluster, an association that is conserved throughout gnathostomes. Lineage-specific expansions to small vtRNA gene clusters are frequently observed in this region. A second vtRNA locus is syntenically conserved across eutherian mammals. The vtRNAs at the two eutherian loci exhibit substantial differences in their promoter structures, explaining their differential expression patterns in several human cancer cell lines. In teleosts, expression of several paralogous vtRNA genes, most but not all located at the syntenically conserved protocadherin locus, was verified by reverse transcriptase-polymerase chain reaction.


Microbiology | 2008

Detection of small RNAs in Pseudomonas aeruginosa by RNomics and structure-based bioinformatic tools

Elisabeth Sonnleitner; Theresa Sorger-Domenigg; Monika J. Madej; Sven Findeiss; Jörg Hackermüller; Alexander Hüttenhofer; Peter F. Stadler; Udo Bläsi; Isabella Moll

Inactivation of the Pseudomonas aeruginosa (PAO1) hfq gene, encoding the Sm-like Hfq protein, resulted in pleiotropic effects that included an attenuated virulence. As regulation by Hfq often involves the action of small regulatory RNAs (sRNAs), we have used a shotgun cloning approach (RNomics) and bioinformatic tools to identify sRNAs in strain PAO1. For cDNA library construction, total RNA was extracted from PAO1 cultures either grown to stationary phase or exposed to human serum. The cDNA libraries were generated from small-sized RNAs of PAO1 after co-immunoprecipitation with Hfq. Of 400 sequenced cDNA clones, 11 mapped to intergenic regions. Band-shift assays and Northern blot analyses performed with two selected sRNAs confirmed that Hfq binds to and affects the steady-state levels of these RNAs. A proteome study performed upon overproduction of one sRNA, PhrS, implicated it in riboregulation. PhrS contains an ORF, and evidence for its translation is presented. In addition, based on surveys with structure-based bioinformatic tools, we provide an electronic compilation of putative sRNA and non-coding RNA genes of PAO1 based on their evolutionarily conserved structure.


BMC Genomics | 2007

Computational RNomics of drosophilids.

Dominic Rose; Jörg Hackermüller; Stefan Washietl; Kristin Reiche; Jana Hertel; Sven Findeiß; Peter F. Stadler; Sonja J. Prohaska

BackgroundRecent experimental and computational studies have provided overwhelming evidence for a plethora of diverse transcripts that are unrelated to protein-coding genes. One subclass consists of those RNAs that require distinctive secondary structure motifs to exert their biological function and hence exhibit distinctive patterns of sequence conservation characteristic for positive selection on RNA secondary structure.The deep-sequencing of 12 drosophilid species coordinated by the NHGRI provides an ideal data set of comparative computational approaches to determine those genomic loci that code for evolutionarily conserved RNA motifs. This class of loci includes the majority of the known small ncRNAs as well as structured RNA motifs in mRNAs. We report here on a genome-wide survey using RNAz.ResultsWe obtain 16 000 high quality predictions among which we recover the majority of the known ncRNAs. Taking a pessimistically estimated false discovery rate of 40% into account, this implies that at least some ten thousand loci in the Drosophila genome show the hallmarks of stabilizing selection action of RNA structure, and hence are most likely functional at the RNA level. A subset of RNAz predictions overlapping with TRF1 and BRF binding sites [Isogai et al., EMBO J. 26: 79–89 (2007)], which are plausible candidates of Pol III transcripts, have been studied in more detail. Among these sequences we identify several clusters of ncRNA candidates with striking structural similarities.ConclusionThe statistical evaluation of the RNAz predictions in comparison with a similar analysis of vertebrate genomes [Washietl et al., Nat. Biotech. 23: 1383–1390 (2005)] shows that qualitatively similar fractions of structured RNAs are found in introns, UTRs, and intergenic regions. The intergenic RNA structures, however, are concentrated much more closely around known protein-coding loci, suggesting that flies have significantly smaller complement of independent structured ncRNAs compared to mammals.


Human Molecular Genetics | 2015

Dissecting the genetics of the human transcriptome identifies novel trait-related trans-eQTLs and corroborates the regulatory relevance of non-protein coding loci

Holger Kirsten; Hoor Al-Hasani; Lesca M. Holdt; Arnd Gross; Frank Beutner; Knut Krohn; Katrin Horn; Peter Ahnert; Ralph Burkhardt; Kristin Reiche; Jörg Hackermüller; Markus Löffler; Daniel Teupser; Joachim Thiery; Markus Scholz

Genetics of gene expression (eQTLs or expression QTLs) has proved an indispensable tool for understanding biological pathways and pathomechanisms of trait-associated SNPs. However, power of most genome-wide eQTL studies is still limited. We performed a large eQTL study in peripheral blood mononuclear cells of 2112 individuals increasing the power to detect trans-effects genome-wide. Going beyond univariate SNP-transcript associations, we analyse relations of eQTLs to biological pathways, polygenetic effects of expression regulation, trans-clusters and enrichment of co-localized functional elements. We found eQTLs for about 85% of analysed genes, and 18% of genes were trans-regulated. Local eSNPs were enriched up to a distance of 5 Mb to the transcript challenging typically implemented ranges of cis-regulations. Pathway enrichment within regulated genes of GWAS-related eSNPs supported functional relevance of identified eQTLs. We demonstrate that nearest genes of GWAS-SNPs might frequently be misleading functional candidates. We identified novel trans-clusters of potential functional relevance for GWAS-SNPs of several phenotypes including obesity-related traits, HDL-cholesterol levels and haematological phenotypes. We used chromatin immunoprecipitation data for demonstrating biological effects. Yet, we show for strongly heritable transcripts that still little trans-chromosomal heritability is explained by all identified trans-eSNPs; however, our data suggest that most cis-heritability of these transcripts seems explained. Dissection of co-localized functional elements indicated a prominent role of SNPs in loci of pseudogenes and non-coding RNAs for the regulation of coding genes. In summary, our study substantially increases the catalogue of human eQTLs and improves our understanding of the complex genetic regulation of gene expression, pathways and disease-related processes.


International Journal of Cancer | 2012

CD31, EDNRB and TSPAN7 are promising prognostic markers in clear-cell renal cell carcinoma revealed by genome-wide expression analyses of primary tumors and metastases†

Daniela Wuttig; Stefan Zastrow; Susanne Füssel; Marieta Toma; Matthias Meinhardt; Kristin Kalman; Kerstin Junker; Jimsgene Sanjmyatav; Kerstin Boll; Jörg Hackermüller; Axel Rolle; Marc-Oliver Grimm; Manfred P. Wirth

Currently used clinicopathological parameters are insufficient for a reliable prediction of metastatic risk and disease‐free survival (DFS) of patients with clear‐cell renal cell carcinoma (ccRCC). To identify prognostic genes, the expression profiles of primary ccRCC obtained from patients with different DFS — eight synchronously, nine metachronously and seven not metastasized tumors — were determined by genome‐wide expression analyses. Synchronously and metachronously metastasized primary ccRCC differed in the expression of 167 genes. Thirty‐six of these genes were also differentially expressed in synchronously vs. metachronously developed pulmonary metastases analyzed in a previous study. Because of their DFS‐associated deregulation that is concordant in metastases and primary ccRCC, these genes are potentially functionally involved in metastatic tumor growth and are also prognostically useful. A prognostic impact was confirmed for the genes CD31, EDNRB and TSPAN7 at the mRNA level (n = 86), and for TSPAN7 at the protein level (n = 106). Patients with a higher gene expression of EDNRB or TSPAN7, or with TSPAN7‐positive vessels in both cores investigated on tissue microarrays had a significantly longer DFS and tumor‐specific survival (TSS). Patients with a higher CD31 gene expression showed a significantly longer TSS. EDNRB was an independent prognostic marker for the DFS. CD31, EDNRB and TSPAN7 had an independent impact on the TSS. In summary, comparative analysis of primary tumors and metastases is appropriate to identify independent prognostic markers in ccRCC. Gene expression of CD31 and EDNRB, and endothelial TSPAN7 protein level are potentially useful to improve outcome prediction because of their independent prognostic impact.

Collaboration


Dive into the Jörg Hackermüller's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Manfred P. Wirth

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Susanne Füssel

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge