Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dominic T. Cheng is active.

Publication


Featured researches published by Dominic T. Cheng.


The Journal of Neuroscience | 2004

Neural Substrates Mediating Human Delay and Trace Fear Conditioning

David C. Knight; Dominic T. Cheng; Christine N. Smith; Elliot A. Stein; Fred J. Helmstetter

Previous functional magnetic resonance imaging (fMRI) studies with human subjects have explored the neural substrates involved in forming associations in Pavlovian fear conditioning. Most of these studies used delay procedures, in which the conditioned stimulus (CS) and unconditioned stimulus (UCS) coterminate. Less is known about brain regions that support trace conditioning, a procedure in which an interval of time (trace interval) elapses between CS termination and UCS onset. Previous work suggests significant overlap in the neural circuitry supporting delay and trace fear conditioning, although trace conditioning requires recruitment of additional brain regions. In the present event-related fMRI study, skin conductance and continuous measures of UCS expectancy were recorded concurrently with whole-brain blood oxygenation level-dependent (BOLD) imaging during direct comparison of delay and trace discrimination learning. Significant activation was observed within the visual cortex for all CSs. Anterior cingulate and medial thalamic activity reflected associative learning common to both delay and trace procedures. Activations within the supplementary motor area (SMA), frontal operculum, middle frontal gyri, and inferior parietal lobule were specifically associated with trace interval processing. The hippocampus displayed BOLD signal increases early in training during all conditions; however, differences were observed in hippocampal response magnitude related to the accuracy of predicting UCS presentations. These results demonstrate overlapping patterns of activation within the anterior cingulate, medial thalamus, and visual cortex during delay and trace procedures, with additional recruitment of the hippocampus, SMA, frontal operculum, middle frontal gyrus, and inferior parietal lobule during trace conditioning. These data suggest that the hippocampus codes temporal information during trace conditioning, whereas brain regions supporting working memory processes maintain the CS-UCS representation during the trace interval.


Cognitive, Affective, & Behavioral Neuroscience | 2004

Amygdala and hippocampal activity during acquisition and extinction of human fear conditioning.

David C. Knight; Christine N. Smith; Dominic T. Cheng; Elliot A. Stein; Fred J. Helmstetter

Previous functional magnetic resonance imaging (fMRI) studies have characterized brain systems involved in conditional response acquisition during Pavlovian fear conditioning. However, the functional neuroanatomy underlying the extinction of human conditional fear remains largely undetermined. The present study used fMRI to examine brain activity during acquisition and extinction of fear conditioning. During the acquisition phase, participants were either exposed to light (CS) presentations that signaled a brief electrical stimulation (paired group) or received light presentations that did not serve as a warning signal (control group). During the extinction phase, half of the paired group subjects continued to receive the same treatment, whereas the remainder received light alone. Control subjects also received light alone during the extinction phase. Changes in metabolic activity within the amygdala and hippocampus support the involvement of these regions in each of the procedural phases of fear conditioning. Hippocampal activity developed during acquisition of the fear response. Amygdala activity increased whenever experimental contingencies were altered, suggesting that this region is involved in processing changes in environmental relationships. The present data show learning-related amygdala and hippocampal activity during human Pavlovian fear conditioning and suggest that the amygdala is particularly important for forming new associations as relationships between stimuli change.


Behavioral Neuroscience | 2003

Functional MRI of Human Amygdala Activity During Pavlovian Fear Conditioning: Stimulus Processing Versus Response Expression

Dominic T. Cheng; David C. Knight; Christine N. Smith; Elliot A. Stein; Fred J. Helmstetter

Although laboratory animal studies have shown that the amygdala plays multiple roles in conditional fear, less is known about the human amygdala. Human subjects were trained in a Pavlovian fear conditioning paradigm during functional magnetic resonance imaging (fMRI). Brain activity maps correlated with reference waveforms representing the temporal pattern of visual conditional stimuli (CSs) and subject-derived autonomic responses were compared. Subjects receiving paired CS-shock presentations showed greater amygdala activity than subjects receiving unpaired CS-shock presentations when their brain activity was correlated with a waveform generated from their behavioral responses. Stimulus-based waveforms revealed learning differences in the visual cortex, but not in the amygdala. These data support the view that the amygdala is important for the expression of learned behavioral responses during Pavlovian fear conditioning.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Neural substrates underlying human delay and trace eyeblink conditioning

Dominic T. Cheng; John F. Disterhoft; John M. Power; Deborah A. Ellis; John E. Desmond

Classical conditioning paradigms, such as trace conditioning, in which a silent period elapses between the offset of the conditioned stimulus (CS) and the delivery of the unconditioned stimulus (US), and delay conditioning, in which the CS and US coterminate, are widely used to study the neural substrates of associative learning. However, there are significant gaps in our knowledge of the neural systems underlying conditioning in humans. For example, evidence from animal and human patient research suggests that the hippocampus plays a critical role during trace eyeblink conditioning, but there is no evidence to date in humans that the hippocampus is active during trace eyeblink conditioning or is differentially responsive to delay and trace paradigms. The present work provides a direct comparison of the neural correlates of human delay and trace eyeblink conditioning by using functional MRI. Behavioral results showed that humans can learn both delay and trace conditioning in parallel. Comparable delay and trace activation was measured in the cerebellum, whereas greater hippocampal activity was detected during trace compared with delay conditioning. These findings further support the position that the cerebellum is involved in both delay and trace eyeblink conditioning whereas the hippocampus is critical for trace eyeblink conditioning. These results also suggest that the neural circuitry supporting delay and trace eyeblink classical conditioning in humans and laboratory animals may be functionally similar.


Human Brain Mapping | 2014

Functional MRI of cerebellar activity during eyeblink classical conditioning in children and adults

Dominic T. Cheng; Ernesta M. Meintjes; Mark E. Stanton; John E. Desmond; Mariska Pienaar; Neil C. Dodge; John M. Power; Christopher D. Molteno; John F. Disterhoft; Joseph L. Jacobson; Sandra W. Jacobson

This study characterized human cerebellar activity during eyeblink classical conditioning (EBC) in children and adults using functional magnetic resonance imaging (fMRI). During fMRI, participants were administered delay conditioning trials, in which the conditioned stimulus (a tone) precedes, overlaps, and coterminates with the unconditioned stimulus (a corneal airpuff). Behavioral eyeblink responses and brain activation were measured concurrently during two phases: pseudoconditioning, involving presentations of tone alone and airpuff alone, and conditioning, during which the tone and airpuff were paired. Although all participants demonstrated significant conditioning, the adults produced more conditioned responses (CRs) than the children. When brain activations during pseudoconditioning were subtracted from those elicited during conditioning, significant activity was distributed throughout the cerebellar cortex (Crus I‐II, lateral lobules IV‐IX, and vermis IV–VI) in all participants, suggesting multiple sites of associative learning‐related plasticity. Despite their less optimal behavioral performance, the children showed greater responding in the pons, lateral lobules VIII, IX, and Crus I, and vermis VI, suggesting that they may require greater activation and/or the recruitment of supplementary structures to achieve successful conditioning. Correlation analyses relating brain activations to behavioral CRs showed a positive association of activity in cerebellar deep nuclei (including dentate, fastigial, and interposed nuclei) and vermis VI with CRs in the children. This is the first study to compare cerebellar cortical and deep nuclei activations in children versus adults during EBC. Hum Brain Mapp 35:1390–1403, 2014.


Psychology and Aging | 2010

The effects of aging in delay and trace human eyeblink conditioning

Dominic T. Cheng; Monica L. Faulkner; John F. Disterhoft; John E. Desmond

Normal aging has been shown to impact performance during human eyeblink classical conditioning, with older adults showing lower conditioning levels than younger adults. Previous findings showed younger adults can acquire both delay and trace conditioning concurrently, but it is not known whether older adults can learn under the same conditions. Present results indicated older adults did not produce a significantly greater number of conditioned responses during acquisition, but their ability to time eyeblink responses prior to the unconditioned stimulus was preserved. The decline in eyeblink conditioning that typically accompanies aging has been extended to concurrent presentations of delay and trace conditioning trials.


Cerebral Cortex | 2016

The Association Between Eye Movements and Cerebellar Activation in a Verbal Working Memory Task

Jutta Peterburs; Dominic T. Cheng; John E. Desmond

It has been argued that cerebellar activations during cognitive tasks may masquerade as cognition, while actually reflecting processes related to movement planning or motor learning. The present study investigated whether the cerebellar load effect for verbal working memory, that is, increased activations in lobule VI/Crus I and lobule VIIB/VIIIA, is related to eye movements and oculomotor processing. Fifteen participants performed an fMRI-based Sternberg verbal working memory task. Oculomotor and cognitive task demands were manipulated by using closely and widely spaced stimuli, and high and low cognitive load. Trial-based quantitative eye movement parameters were obtained from concurrent eye tracking. Conventional MRI analysis replicated the cerebellar load effect in lobules VI and VIIB/VIIIa. With quantitative eye movement parameters as regressors, analysis yielded very similar activation patterns. While load effect and eye regressor generally recruited spatially distinct neocortical and cerebellar regions, conjunction analysis showed that a small subset of prefrontal areas implicated in the load effect also responded to the eye regressor. The present results indicate that cognitive load-dependent activations in lateral superior and posteroinferior cerebellar regions in the Sternberg task are independent of eye movements occurring during stimulus encoding. This is inconsistent with the notion that cognitive load-dependent cerebellar activations merely reflect oculomotor processing.


Neuroscience | 2015

Cross-frequency coupling in deep brain structures upon processing the painful sensory inputs

C.C. Liu; J. H. Chien; J.H. Kim; Y.F. Chuang; Dominic T. Cheng; William S. Anderson; F. A. Lenz

Cross-frequency coupling has been shown to be functionally significant in cortical information processing, potentially serving as a mechanism for integrating functionally relevant regions in the brain. In this study, we evaluate the hypothesis that pain-related gamma oscillatory responses are coupled with low-frequency oscillations in the frontal lobe, amygdala and hippocampus, areas known to have roles in pain processing. We delivered painful laser pulses to random locations on the dorsal hand of five patients with uncontrolled epilepsy requiring depth electrode implantation for seizure monitoring. Two blocks of 40 laser stimulations were delivered to each subject and the pain-intensity was controlled at five in a 0-10 scale by adjusting the energy level of the laser pulses. Local-field-potentials (LFPs) were recorded through bilaterally implanted depth electrode contacts to study the oscillatory responses upon processing the painful laser stimulations. Our results show that painful laser stimulations enhanced low-gamma (LH, 40-70 Hz) and high-gamma (HG, 70-110 Hz) oscillatory responses in the amygdala and hippocampal regions on the right hemisphere and these gamma responses were significantly coupled with the phases of theta (4-7 Hz) and alpha (8-1 2 Hz) rhythms during pain processing. Given the roles of these deep brain structures in emotion, these findings suggest that the oscillatory responses in these regions may play a role in integrating the affective component of pain, which may contribute to our understanding of the mechanisms underlying the affective information processing in humans.


Frontiers in Psychiatry | 2015

Eyeblink Classical Conditioning in Alcoholism and Fetal Alcohol Spectrum Disorders

Dominic T. Cheng; Sandra W. Jacobson; Joseph L. Jacobson; Christopher D. Molteno; Mark E. Stanton; John E. Desmond

Alcoholism is a debilitating disorder that can take a significant toll on health and professional and personal relationships. Excessive alcohol consumption can have a serious impact on both drinkers and developing fetuses, leading to long-term learning impairments. Decades of research in laboratory animals and humans have demonstrated the value of eyeblink classical conditioning (EBC) as a well-characterized model system to study the neural mechanisms underlying associative learning. Behavioral EBC studies in adults with alcohol use disorders and in children with fetal alcohol spectrum disorders report a clear learning deficit in these two patient populations, suggesting alcohol-related damage to the cerebellum and associated structures. Insight into the neural mechanisms underlying these learning impairments has largely stemmed from laboratory animal studies. In this mini-review, we present and discuss exemplary animal findings and data from patient and neuroimaging studies. An improved understanding of the neural mechanisms underlying learning deficits in EBC related to alcoholism and prenatal alcohol exposure has the potential to advance the diagnoses, treatment, and prevention of these and other pediatric and adult disorders.


Cerebral Cortex | 2016

Functional MRI of Human Eyeblink Classical Conditioning in Children with Fetal Alcohol Spectrum Disorders

Dominic T. Cheng; Ernesta M. Meintjes; Mark E. Stanton; Neil C. Dodge; Mariska Pienaar; Christopher Warton; John E. Desmond; Christopher D. Molteno; Bradley S. Peterson; Joseph L. Jacobson; Sandra W. Jacobson

Prenatal alcohol exposure has been linked to a broad range of developmental deficits, with eyeblink classical conditioning (EBC) among the most sensitive endpoints. This fMRI study compared EBC-related brain activity in 47 children with fetal alcohol syndrome (FAS), partial FAS (PFAS), heavily exposed (HE) non-syndromal children, and healthy controls. All of the children had previously participated in two EBC studies conducted as part of our longitudinal study of fetal alcohol spectrum disorders. Although learning-related behavioral differences were seen in all groups during the scans, controls showed more conditioned responses (CR) than the alcohol-exposed groups. Despite lower conditioning levels relative to controls, the exposed groups exhibited extensive cerebellar activations. Specifically, children with FAS/PFAS showed increased activation of cerebellar lobule VI in session 2, while HE children showed increased activation in session 1. Continuous measures of prenatal alcohol use correlated with learning-related activations in cerebellum and frontal cortices. Only controls showed significant cerebellar activation-CR correlations in the deep nuclei and lateral lobule VI, suggesting that these key regions supporting EBC may be functionally disorganized in alcohol-exposed children. These findings are the first to characterize abnormalities in brain function associated with the behavioral conditioning deficits seen in children with prenatal alcohol exposure.

Collaboration


Dive into the Dominic T. Cheng's collaboration.

Top Co-Authors

Avatar

Fred J. Helmstetter

University of Wisconsin–Milwaukee

View shared research outputs
Top Co-Authors

Avatar

John E. Desmond

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. Knight

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Elliot A. Stein

National Institute on Drug Abuse

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge