Dominik Domanski
University of Victoria
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dominik Domanski.
Proteomics | 2012
Dominik Domanski; Andrew J. Percy; Juncong Yang; Andrew G. Chambers; John S. Hill; Gabriela V. Cohen Freue; Christoph H. Borchers
A highly‐multiplexed MRM‐based assay for determination of cardiovascular disease (CVD) status and disease classification has been developed for clinical research. A high‐flow system using ultra‐high performance LC and an Agilent 6490 triple quadrupole mass spectrometer, equipped with an ion funnel, provided ease of use and increased the robustness of the assay. The assay uses 135 stable isotope‐labeled peptide standards for the quantitation of 67 putative biomarkers of CVD in tryptic digests of whole plasma in a 30‐min assay. Eighty‐five analyses of the same sample showed no loss of sensitivity (<20% CV for 134/135 peptides) and no loss of retention time accuracy (<0.5% CV for all peptides). The maximum linear dynamic range of the MRM assays ranged from 103–105 for 106 of the assays. Excellent linear responses (r >0.98) were obtained for 117 of the 135 peptide targets with attomole level limits of quantitation (<20% CV and accuracy 80–120%) for 81 of the 135 peptides. The assay presented in this study is easy to use, robust, sensitive, and has high‐throughput capabilities through short analysis time and complete automated sample preparation. It is therefore well suited for CVD biomarker validation and discovery in plasma.
Journal of Proteomics | 2012
Yi-Ting Chen; Hsiao-Wei Chen; Dominik Domanski; Derek Smith; Kung-Hao Liang; Chih-Ching Wu; Chien-Lun Chen; Ting Chung; M. F. Chen; Yu-Sun Chang; Carol E. Parker; Christoph H. Borchers; Jau-Song Yu
Three common urological diseases are bladder cancer, urinary tract infection, and hematuria. Seventeen bladder cancer biomarkers were previously discovered using iTRAQ - these findings were verified by MRM-MS in this current study. Urine samples from 156 patients with hernia (n=57, control), bladder cancer (n=76), or urinary tract infection/hematuria (n=23) were collected and subjected to multiplexed LC-MRM/MS to determine the concentrations of 63 proteins that are normally considered to be plasma proteins, but which include proteins found in our earlier iTRAQ study. Sixty-five stable isotope-labeled standard proteotypic peptides were used as internal standards for 63 targeted proteins. Twelve proteins showed higher concentrations in the bladder cancer group than in the hernia and the urinary tract infection/hematuria groups, and thus represent potential urinary biomarkers for detection of bladder cancer. Prothrombin had the highest AUC (0.796), with 71.1% sensitivity and 75.0% specificity for differentiating bladder cancer (n=76) from non-cancerous (n=80) patients. The multiplexed MRM-MS data was used to generate a six-peptide marker panel. This six-peptide panel (afamin, adiponectin, complement C4 gamma chain, apolipoprotein A-II precursor, ceruloplasmin, and prothrombin) can discriminate bladder cancer subjects from non-cancerous subjects with an AUC of 0.814, with a 76.3% positive predictive value, and a 77.5% negative predictive value. This article is part of a Special Section entitled: Understanding genome regulation and genetic diversity by mass spectrometry.
Plant Journal | 2009
Katherine G. Zulak; Dustin Lippert; Michael A. Kuzyk; Dominik Domanski; Tina Chou; Christoph H. Borchers; Jörg Bohlmann
Induction of terpene synthase (TPS) gene expression and enzyme activity is known to occur in response to various chemical and biological stimuli in several species of spruce (genus Picea). However, high sequence identity between TPS family members has made it difficult to determine the induction patterns of individual TPS at the protein and transcript levels and whether specific TPS enzymes respond differentially to treatment. In the present study we used a multi-level approach to measure the induction and activity of TPS enzymes in protein extracts of Norway spruce (Picea abies) bark tissue following treatment with methyl jasmonate (MeJA). Measurements were made on the transcript, protein, enzyme activity and metabolite levels. Using a relatively new proteomics application, selective reaction monitoring (SRM), it was possible to differentiate and quantitatively measure the abundance of several known TPS proteins and three 1-deoxy-D-xylulose 5-phosphate synthase (DXS) isoforms in Norway spruce. Protein levels of individual TPS and DXS enzymes were differentially induced upon MeJA treatment and good correlation was generally observed between induction of transcripts, proteins, and enzyme activities. Most of the mono- and diterpenoid metabolites accumulated with similar temporal patterns of induction as part of the coordinated multi-compound chemical defense response. Protein and enzyme activity levels of the monoTPS (+)-3-carene synthase and the corresponding accumulation of (+)-3-carene was induced to a higher fold change than any other TPS or metabolite measured, indicating an important role in the induced terpenoid defense response in Norway spruce.
Plant Journal | 2011
Dawn E. Hall; Jeanne A. Robert; Christopher I. Keeling; Dominik Domanski; Alfonso Lara Quesada; Sharon Jancsik; Michael A. Kuzyk; Britta Hamberger; Christoph H. Borchers; Jörg Bohlmann
Conifers are extremely long-lived plants that have evolved complex chemical defenses in the form of oleoresin terpenoids to resist attack from pathogens and herbivores. In these species, terpenoid diversity is determined by the size and composition of the terpene synthase (TPS) gene family and the single- and multi-product profiles of these enzymes. The monoterpene (+)-3-carene is associated with resistance of Sitka spruce (Picea sitchensis) to white pine weevil (Pissodes strobi). We used a combined genomic, proteomic and biochemical approach to analyze the (+)-3-carene phenotype in two contrasting Sitka spruce genotypes. Resistant trees produced significantly higher levels of (+)-3-carene than susceptible trees, in which only trace amounts were detected. Biosynthesis of (+)-3-carene is controlled, at the genome level, by a small family of closely related (+)-3-carene synthase (PsTPS-3car) genes (82-95% amino acid sequence identity). Transcript profiling identified one PsTPS-3car gene (PsTPS-3car1) that is expressed in both genotypes, one gene (PsTPS-3car2) that is expressed only in resistant trees, and one gene (PsTPS-3car3) that is expressed only in susceptible trees. The PsTPS-3car2 gene was not detected in genomic DNA of susceptible trees. Target-specific selected reaction monitoring confirmed this pattern of differential expression of members of the PsTPS-3car family at the proteome level. Kinetic characterization of the recombinant PsTPS-3car enzymes identified differences in the activities of PsTPS-3car2 and PsTPS-3car3 as a factor contributing to the different (+)-3-carene profiles of resistant and susceptible trees. In conclusion, variation of the (+)-3-carene phenotype is controlled by copy number variation of PsTPS-3car genes, variation of gene and protein expression, and variation in catalytic efficiencies.
Analytical Chemistry | 2010
Dominik Domanski; Leigh C. Murphy; Christoph H. Borchers
We have developed a phosphatase-based phosphopeptide quantitation (PPQ) method for determining phosphorylation stoichiometry in complex biological samples. This PPQ method is based on enzymatic dephosphorylation, combined with specific and accurate peptide identification and quantification by multiple reaction monitoring (MRM) with stable-isotope-labeled standard peptides. In contrast with classical MRM methods for the quantitation of phosphorylation stoichiometry, the PPQ-MRM method needs only one nonphosphorylated SIS (stable isotope-coded standard) and two analyses (one for the untreated sample and one for the phosphatase-treated sample), from which the expression and modification levels can accurately be determined. From these analyses, the percent phosphorylation can be determined. In this manuscript, we compare the PPQ-MRM method with an MRM method without phosphatase and demonstrate the application of these methods to the detection and quantitation of phosphorylation of the classic phosphorylated breast cancer biomarkers (ERalpha and HER2), and for phosphorylated RAF and ERK1, which also contain phosphorylation sites of biological importance. Using synthetic peptides spiked into a complex protein digest, we were able to use our PPQ-MRM method to accurately determine the total phosphorylation stoichiometry on specific peptides as well as the absolute amount of the peptide and phosphopeptide present. Analyses of samples containing ERalpha protein revealed that the PPQ-MRM method is capable of determining phosphorylation stoichiometry in proteins from cell lines, and is in good agreement with determinations obtained using the direct MRM approach in terms of phosphorylation and total protein amount.
The American Journal of Clinical Nutrition | 2012
Bibiana Garcia-Bailo; Darren R. Brenner; Daiva Nielsen; Hyeon-Joo Lee; Dominik Domanski; Michael A. Kuzyk; Christoph H. Borchers; Alaa Badawi; Mohamed A. Karmali; Ahmed El-Sohemy
BACKGROUND High-abundance plasma proteins are involved in disease-associated pathways and are useful in the diagnosis of nutritional and disease states. However, little is known about how concentrations of many plasma proteins vary between individuals from different ethnocultural groups with different dietary habits. OBJECTIVE We explored the association between plasma proteomic groups, dietary patterns, and ethnicity in the Toronto Nutrigenomics and Health Study, an ethnically diverse population of healthy young adults. DESIGN Concentrations of 54 high-abundance plasma proteins were measured simultaneously by liquid chromatography/multiple-reaction monitoring-mass spectrometry in 1090 individuals. Principal components analysis was used to identify plasma proteomic groups. Linear regression was used to investigate relations between proteomic groups and previously identified dietary patterns (Western, prudent, Eastern). Differences in individual protein concentrations between ethnocultural groups were tested by using general linear models. RESULTS Four independent principal components representative of proteomic groups were identified. Principal components 1 and 2 included proteins from multiple pathways. Component 3 was inflammatory, and component 4 included coagulation cascade proteins. East Asians and South Asians had lower component 1 scores, and East Asians had higher component 2 scores. South Asians had higher average scores for component 3. Individual protein concentrations also varied across ethnocultural groups. Principal component 1 was positively associated with the Western dietary pattern and inversely associated with the Eastern pattern. Component 3 was positively associated with the Eastern pattern. CONCLUSIONS Plasma proteomic groups differ between young adults of diverse ethnocultural groups with different dietary habits. These differences may partly account for different rates of cardiometabolic disease later in life.
PLOS ONE | 2012
Adriana Aguilar-Mahecha; Michael A. Kuzyk; Dominik Domanski; Christoph H. Borchers; Mark Basik
Blood sample processing and handling can have a significant impact on the stability and levels of proteins measured in biomarker studies. Such pre-analytical variability needs to be well understood in the context of the different proteomics platforms available for biomarker discovery and validation. In the present study we evaluated different types of blood collection tubes including the BD P100 tube containing protease inhibitors as well as CTAD tubes, which prevent platelet activation. We studied the effect of different processing protocols as well as delays in tube processing on the levels of 55 mid and high abundance plasma proteins using novel multiple-reaction monitoring-mass spectrometry (MRM-MS) assays as well as 27 low abundance cytokines using a commercially available multiplexed bead-based immunoassay. The use of P100 tubes containing protease inhibitors only conferred proteolytic protection for 4 cytokines and only one MRM-MS-measured peptide. Mid and high abundance proteins measured by MRM are highly stable in plasma left unprocessed for up to six hours although platelet activation can also impact the levels of these proteins. The levels of cytokines were elevated when tubes were centrifuged at cold temperature, while low levels were detected when samples were collected in CTAD tubes. Delays in centrifugation also had an impact on the levels of cytokines measured depending on the type of collection tube used. Our findings can help in the development of guidelines for blood collection and processing for proteomic biomarker studies.
Journal of Proteomics | 2013
Andrew J. Percy; Andrew G. Chambers; Juncong Yang; Angela M. Jackson; Dominik Domanski; Julia M. Burkhart; Albert Sickmann; Christoph H. Borchers
UNLABELLED There exists a growing demand in the proteomics community to standardize experimental methods and liquid chromatography-mass spectrometry (LC/MS) platforms in order to enable the acquisition of more precise and accurate quantitative data. This necessity is heightened by the evolving trend of verifying and validating candidate disease biomarkers in complex biofluids, such as blood plasma, through targeted multiple reaction monitoring (MRM)-based approaches with stable isotope-labeled standards (SIS). Considering the lack of performance standards for quantitative plasma proteomics, we previously developed two reference kits to evaluate the MRM with SIS peptide approach using undepleted and non-enriched human plasma. The first kit tests the effectiveness of the LC/MRM-MS platform (kit #1), while the second evaluates the performance of an entire analytical workflow (kit #2). Here, these kits have been refined for practical use and then evaluated through intra- and inter-laboratory testing on 6 common LC/MS platforms. For an identical panel of 22 plasma proteins, similar concentrations were determined, regardless of the kit, instrument platform, and laboratory of analysis. These results demonstrate the value of the kit and reinforce the utility of standardized methods and protocols. BIOLOGICAL SIGNIFICANCE The proteomics community needs standardized experimental protocols and quality control methods in order to improve the reproducibility of MS-based quantitative data. This need is heightened by the evolving trend for MRM-based validation of proposed disease biomarkers in complex biofluids such as blood plasma. We have developed two kits to assist in the inter- and intra-laboratory quality control of MRM experiments: the first kit tests the effectiveness of the LC/MRM-MS platform (kit #1), while the second evaluates the performance of an entire analytical workflow (kit #2). In this paper, we report the use of these kits in intra- and inter-laboratory testing on 6 common LC/MS platforms. This article is part of a Special Issue entitled: Standardization and Quality Control in Proteomics.
Clinical Proteomics | 2012
Magda Bakun; Mariusz Niemczyk; Dominik Domanski; Radoslaw Jazwiec; Anna Perzanowska; Stanisław Niemczyk; Michał Kistowski; Agnieszka Fabijańska; Agnieszka Borowiec; L. Paczek; Michal Dadlez
BackgroundAutosomal dominant polycystic kidney disease (ADPKD) is responsible for 10% of cases of the end stage renal disease. Early diagnosis, especially of potential fast progressors would be of benefit for efficient planning of therapy. Urine excreted proteome has become a promising field of the search for marker patterns of renal diseases including ADPKD. Up to now however, only the low molecular weight fraction of ADPKD proteomic fingerprint was studied. The aim of our study was to characterize the higher molecular weight fraction of urinary proteome of ADPKD population in comparison to healthy controls as a part of a general effort aiming at exhaustive characterization of human urine proteome in health and disease, preceding establishment of clinically useful disease marker panel.ResultsWe have analyzed the protein composition of urine retentate (>10 kDa cutoff) from 30 ADPKD patients and an appropriate healthy control group by means of a gel-free relative quantitation of a set of more than 1400 proteins. We have identified an ADPKD-characteristic footprint of 155 proteins significantly up- or downrepresented in the urine of ADPKD patients. We have found changes in proteins of complement system, apolipoproteins, serpins, several growth factors in addition to known collagens and extracellular matrix components. For a subset of these proteins we have confirmed the results using an alternative analytical technique.ConclusionsObtained results provide basis for further characterization of pathomechanism underlying the observed differences and establishing the proteomic prognostic marker panel.
Comparative Biochemistry and Physiology Part D: Genomics and Proteomics | 2006
Nik Veldhoen; Rachel C. Skirrow; Lan Ji; Dominik Domanski; E. Ryan Bonfield; Carmen M. Bailey; Caren C. Helbing
Despite the extensive use of wildlife species in elucidating important biological processes, very few gene expression tools are available. For example, many frog species with different sensitivities and ecological niches are used as sentinel species for environmental contaminants and as developmental models. However, gene expression analyses have been essentially limited to one laboratory species. In an attempt to extend gene expression analyses to relevant indigenous species, we have developed a frog cDNA array with probes designed against conserved protein-encoding sequences. Changes in gene expression profiles were identified in cultured tail tips of Rana catesbeiana tadpoles during induction of tail regression by exogenous thyroid hormone and are associated with a transition from active cell proliferation to increased apoptotic activity. The expression profiles of selected genes representative of different response patterns were further characterized in tails of tadpoles undergoing natural metamorphosis using de novo designed biomarker probes and quantitative real-time polymerase chain reaction analysis. The results support the cross-species application of cDNA arrays that can direct the development of gene expression biomarkers for indigenous wildlife species.