Dominik Mojzita
VTT Technical Research Centre of Finland
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dominik Mojzita.
Molecular Genetics and Genomics | 2006
Dominik Mojzita; Stefan Hohmann
Coordination of gene expression in response to different metabolic signals is crucial for cellular homeostasis. In this work, we addressed the role of Pdc2 in the coordinated control of biosynthesis and demand of an essential metabolic cofactor, thiaminediphosphate (ThDP). The DNA binding protein Pdc2 was initially identified as a regulator of the genes PDC1 and PDC5, which encode isoforms of the glycolytic enzyme pyruvate decarboxylase (Pdc). The Pdc2 has also been implicated as a regulator of genes encoding enzymes in ThDP metabolism. The ThDP is the cofactor of Pdc. Using global and gene-specific expression analysis, we show that Pdc2 is required for the upregulation of all genes controlled by thiamine availability. The Pdc2 seems to act together with Thi2, a known transcriptional regulator of THI genes. The requirement for these two factors differs in a gene-specific manner. While the Thi2, in conjunction with Thi3, seems to control expression of THI genes with respect to thiamine availability, the Pdc2 may link the ThDP demand to carbon source availability. Interestingly, the enzymes Pdc1 and Pdc5 are enriched in the nucleus. Both are known to affect gene expression in an autoregulatory mechanism and expression of both is regulated by glucose and Pdc2, further pointing to a role of Pdc2 in coordinating different metabolic signals. Our analysis helps to further define the THI regulon and hence the spectrum of genes/proteins involved in the ThDP homeostasis. In particular, we identify novel proteins putatively involved in thiamine and/or ThDP transport across the plasma and the mitochondrial membrane. In conclusion, the THI regulon is the most interesting system to study principles of genes expression and metabolic coordination and deserves further attention.
Applied and Environmental Microbiology | 2010
Dominik Mojzita; Marilyn G. Wiebe; Satu Hilditch; Harry Boer; Merja Penttilä; Peter Richard
ABSTRACT d-Galacturonic acid can be obtained by hydrolyzing pectin, which is an abundant and low value raw material. By means of metabolic engineering, we constructed fungal strains for the conversion of d-galacturonate to meso-galactarate (mucate). Galactarate has applications in food, cosmetics, and pharmaceuticals and as a platform chemical. In fungi d-galacturonate is catabolized through a reductive pathway with a d-galacturonate reductase as the first enzyme. Deleting the corresponding gene in the fungi Hypocrea jecorina and Aspergillus niger resulted in strains unable to grow on d-galacturonate. The genes of the pathway for d-galacturonate catabolism were upregulated in the presence of d-galacturonate in A. niger, even when the gene for d-galacturonate reductase was deleted, indicating that d-galacturonate itself is an inducer for the pathway. A bacterial gene coding for a d-galacturonate dehydrogenase catalyzing the NAD-dependent oxidation of d-galacturonate to galactarate was introduced to both strains with disrupted d-galacturonate catabolism. Both strains converted d-galacturonate to galactarate. The resulting H. jecorina strain produced galactarate at high yield. The A. niger strain regained the ability to grow on d-galacturonate when the d-galacturonate dehydrogenase was introduced, suggesting that it has a pathway for galactarate catabolism.
Applied and Environmental Microbiology | 2012
Joosu Kuivanen; Dominik Mojzita; Yanming Wang; Satu Hilditch; Merja Penttilä; Peter Richard; Marilyn G. Wiebe
ABSTRACT d-Galacturonic acid, the main monomer of pectin, is an attractive substrate for bioconversions, since pectin-rich biomass is abundantly available and pectin is easily hydrolyzed. l-Galactonic acid is an intermediate in the eukaryotic pathway for d-galacturonic acid catabolism, but extracellular accumulation of l-galactonic acid has not been reported. By deleting the gene encoding l-galactonic acid dehydratase (lgd1 or gaaB) in two filamentous fungi, strains were obtained that converted d-galacturonic acid to l-galactonic acid. Both Trichoderma reesei Δlgd1 and Aspergillus niger ΔgaaB strains produced l-galactonate at yields of 0.6 to 0.9 g per g of substrate consumed. Although T. reesei Δlgd1 could produce l-galactonate at pH 5.5, a lower pH was necessary for A. niger ΔgaaB. Provision of a cosubstrate improved the production rate and titer in both strains. Intracellular accumulation of l-galactonate (40 to 70 mg g biomass−1) suggested that export may be limiting. Deletion of the l-galactonate dehydratase from A. niger was found to delay induction of d-galacturonate reductase and overexpression of the reductase improved initial production rates. Deletion of the l-galactonate dehydratase from A. niger also delayed or prevented induction of the putative d-galacturonate transporter An14g04280. In addition, A. niger ΔgaaB produced l-galactonate from polygalacturonate as efficiently as from the monomer.
Journal of Biological Chemistry | 2010
Dominik Mojzita; Merja Penttilä; Peter Richard
The first enzyme in the pathway for l-arabinose catabolism in eukaryotic microorganisms is a reductase, reducing l-arabinose to l-arabitol. The enzymes catalyzing this reduction are in general nonspecific and would also reduce d-xylose to xylitol, the first step in eukaryotic d-xylose catabolism. It is not clear whether microorganisms use different enzymes depending on the carbon source. Here we show that Aspergillus niger makes use of two different enzymes. We identified, cloned, and characterized an l-arabinose reductase, larA, that is different from the d-xylose reductase, xyrA. The larA is up-regulated on l-arabinose, while the xyrA is up-regulated on d-xylose. There is however an initial up-regulation of larA also on d-xylose but that fades away after about 4 h. The deletion of the larA gene in A. niger results in a slow growth phenotype on l-arabinose, whereas the growth on d-xylose is unaffected. The l-arabinose reductase can convert l-arabinose and d-xylose to their corresponding sugar alcohols but has a higher affinity for l-arabinose. The Km for l-arabinose is 54 ± 6 mm and for d-xylose 155 ± 15 mm.
FEBS Letters | 2010
Dominik Mojzita; Kiira Vuoristo; Outi M. Koivistoinen; Merja Penttilä; Peter Richard
l‐Xylulose reductase is part of the eukaryotic pathway for l‐arabinose catabolism. A previously identified l‐xylulose reductase in Hypocrea jecorina turned out to be not the ‘true’ one since it was not upregulated during growth on l‐arabinose and the deletion strain showed no reduced l‐xylulose reductase activity but instead lost the d‐mannitol dehydrogenase activity [17]. In this communication we identified the ‘true’ l‐xylulose reductase in Aspergillus niger. The gene, lxrA (JGI177736), is upregulated on l‐arabinose and the deletion results in a strain lacking the NADPH‐specific l‐xylulose reductase activity and having reduced growth on l‐arabinose. The purified enzyme had a K m for l‐xylulose of 25 mM and a ν max of 650 U/mg.
Applied and Environmental Microbiology | 2013
Mari Valkonen; Dominik Mojzita; Merja Penttilä; Mojca Benčina
ABSTRACT The ability of cells to maintain pH homeostasis in response to environmental changes has elicited interest in basic and applied research and has prompted the development of methods for intracellular pH measurements. Many traditional methods provide information at population level and thus the average values of the studied cell physiological phenomena, excluding the fact that cell cultures are very heterogeneous. Single-cell analysis, on the other hand, offers more detailed insight into population variability, thereby facilitating a considerably deeper understanding of cell physiology. Although microscopy methods can address this issue, they suffer from limitations in terms of the small number of individual cells that can be studied and complicated image processing. We developed a noninvasive high-throughput method that employs flow cytometry to analyze large populations of cells that express pHluorin, a genetically encoded ratiometric fluorescent probe that is sensitive to pH. The method described here enables measurement of the intracellular pH of single cells with high sensitivity and speed, which is a clear improvement compared to previously published methods that either require pretreatment of the cells, measure cell populations, or require complex data analysis. The ratios of fluorescence intensities, which correlate to the intracellular pH, are independent of the expression levels of the pH probe, making the use of transiently or extrachromosomally expressed probes possible. We conducted an experiment on the kinetics of the pH homeostasis of Saccharomyces cerevisiae cultures grown to a stationary phase after ethanol or glucose addition and after exposure to weak acid stress and glucose pulse. Minor populations with pH homeostasis behaving differently upon treatments were identified.
FEBS Letters | 2012
Outi M. Koivistoinen; Peter Richard; Merja Penttilä; Laura Ruohonen; Dominik Mojzita
In filamentous fungi d‐galactose can be catabolised through the oxido‐reductive and/or the Leloir pathway. In the oxido‐reductive pathway d‐galactose is converted to d‐fructose in a series of steps where the last step is the oxidation of d‐sorbitol by an NAD‐dependent dehydrogenase. We identified a sorbitol dehydrogenase gene, sdhA (JGI53356), in Aspergillus niger encoding a medium chain dehydrogenase which is involved in d‐galactose and d‐sorbitol catabolism. The gene is upregulated in the presence of d‐galactose, galactitol and d‐sorbitol. An sdhA deletion strain showed reduced growth on galactitol and growth on d‐sorbitol was completely abolished. The purified enzyme converted d‐sorbitol to d‐fructose with K m of 50 ± 5 mM and v max of 80 ± 10 U/mg.
Fungal Genetics and Biology | 2012
Dominik Mojzita; Outi M. Koivistoinen; Hannu Maaheimo; Merja Penttilä; Laura Ruohonen; Peter Richard
For the catabolism of D-galactose three different metabolic pathways have been described in filamentous fungi. Apart from the Leloir pathway and the oxidative pathway, there is an alternative oxido-reductive pathway. This oxido-reductive pathway has similarities to the metabolic pathway of L-arabinose, and in Trichoderma reesei (Hypocrea jecorina) and Aspergillus nidulans the same enzyme is employed for the oxidation of L-arabitol and galactitol. Here we show evidence that in Aspergillus niger L-arabitol dehydrogenase (LadA) is not involved in the D-galactose metabolism; instead another dehydrogenase encoding gene, ladB, is induced in response to D-galactose and galactitol and functions as a galactitol dehydrogenase. Deletion of ladB in A. niger results in growth arrest on galactitol and significantly slower growth on D-galactose supplemented with a small amount of D-xylose. D-galactose alone cannot be utilised by A. niger and the addition of D-xylose stimulates growth on D-galactose via transcriptional activation of the D-xylose-inducible reductase gene, xyrA. XyrA catalyses the first step of the D-galactose oxido-reductive pathway, the reduction to galactitol, which in turn seems to be an inducer of the downstream genes such as LadB. The deletion of xyrA results in reduced growth on D-galactose. The ladB gene was expressed in the heterologous host Saccharomyces cerevisiae and the tagged and purified enzyme characterised. LadB and LadA have similar in vitro activity with galactitol. It was confirmed that the reaction product of the LadB reaction from galactitol is L-xylo-3-hexulose as in the case of the T. reesei Lad1.
Yeast | 2014
Yvonne Nygård; Dominik Mojzita; Mervi Toivari; Merja Penttilä; Marilyn G. Wiebe; Laura Ruohonen
Resistance to weak organic acids is important relative to both weak organic acid preservatives and the development of inhibitor tolerant yeast as industrial production organisms. The ABC transporter Pdr12 is important for resistance to sorbic and propionic acid, but its role in tolerance to other weak organic acids with industrial relevance is not well established. In this study, yeast strains with altered expression of PDR12 and/or CMK1, a protein kinase associated with post‐transcriptional negative regulation of Pdr12, were exposed to seven weak organic acids: acetic, formic, glycolic, lactic, propionic, sorbic and levulinic acid. These are widely used as preservatives, present in lignocellulosic hydrolysates or attractive as chemical precursors. Overexpression of PDR12 increased tolerance to acids with longer chain length, such as sorbic, propionic and levulinic acid, whereas deletion of PDR12 increased tolerance to the shorter acetic and formic acid. The viability of all strains decreased dramatically in acetic or propionic acid, but the Δpdr12 strains recovered more rapidly than other strains in acetic acid. Furthermore, our results indicated that Cmk1 plays a role in weak organic acid tolerance, beyond its role in regulation of Pdr12, since deletion of both Cmk1 and Pdr12 resulted in different responses to exposure to acids than were explained by deletion of Pdr12 alone. Copyright
AMB Express | 2014
Joosu Kuivanen; Hugo Dantas; Dominik Mojzita; Edgar Mallmann; Alessandra Biz; Nadia Krieger; David A. Mitchell; Peter Richard
Citrus processing waste is a leftover from the citrus processing industry and is available in large amounts. Typically, this waste is dried to produce animal feed, but sometimes it is just dumped. Its main component is the peel, which consists mostly of pectin, with D-galacturonic acid as the main monomer. Aspergillus niger is a filamentous fungus that efficiently produces pectinases for the hydrolysis of pectin and uses the resulting D-galacturonic acid and most of the other components of citrus peel for growth. We used engineered A. niger strains that were not able to catabolise D-galacturonic acid, but instead converted it to L-galactonic acid. These strains also produced pectinases for the hydrolysis of pectin and were used for the conversion of pectin in orange peel to L-galactonic acid in a consolidated process. The D-galacturonic acid in the orange peel was converted to L-galactonic acid with a yield close to 90%. Submerged and solid-state fermentation processes were compared.