Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Joosu Kuivanen is active.

Publication


Featured researches published by Joosu Kuivanen.


Applied and Environmental Microbiology | 2012

Engineering filamentous fungi for conversion of D-galacturonic acid to L-galactonic acid.

Joosu Kuivanen; Dominik Mojzita; Yanming Wang; Satu Hilditch; Merja Penttilä; Peter Richard; Marilyn G. Wiebe

ABSTRACT d-Galacturonic acid, the main monomer of pectin, is an attractive substrate for bioconversions, since pectin-rich biomass is abundantly available and pectin is easily hydrolyzed. l-Galactonic acid is an intermediate in the eukaryotic pathway for d-galacturonic acid catabolism, but extracellular accumulation of l-galactonic acid has not been reported. By deleting the gene encoding l-galactonic acid dehydratase (lgd1 or gaaB) in two filamentous fungi, strains were obtained that converted d-galacturonic acid to l-galactonic acid. Both Trichoderma reesei Δlgd1 and Aspergillus niger ΔgaaB strains produced l-galactonate at yields of 0.6 to 0.9 g per g of substrate consumed. Although T. reesei Δlgd1 could produce l-galactonate at pH 5.5, a lower pH was necessary for A. niger ΔgaaB. Provision of a cosubstrate improved the production rate and titer in both strains. Intracellular accumulation of l-galactonate (40 to 70 mg g biomass−1) suggested that export may be limiting. Deletion of the l-galactonate dehydratase from A. niger was found to delay induction of d-galacturonate reductase and overexpression of the reductase improved initial production rates. Deletion of the l-galactonate dehydratase from A. niger also delayed or prevented induction of the putative d-galacturonate transporter An14g04280. In addition, A. niger ΔgaaB produced l-galactonate from polygalacturonate as efficiently as from the monomer.


Microbial Cell Factories | 2016

Engineering Aspergillus niger for galactaric acid production: elimination of galactaric acid catabolism by using RNA sequencing and CRISPR/Cas9

Joosu Kuivanen; Y.-M. Jasmin Wang; Peter Richard

Backgroundmeso-Galactaric acid is a dicarboxylic acid that can be produced by the oxidation of d-galacturonic acid, the main constituent of pectin. Mould strains can be engineered to perform this oxidation by expressing the bacterial enzyme uronate dehydrogenase. In addition, the endogenous pathway for d-galacturonic acid catabolism has to be inactivated. The filamentous fungus Aspergillus niger would be a suitable strain for galactaric acid production since it is efficient in pectin hydrolysis, however, it is catabolizing the resulting galactaric acid via an unknown catabolic pathway.ResultsIn this study, a transcriptomics approach was used to identify genes involved in galactaric acid catabolism. Several genes were deleted using CRISPR/Cas9 together with in vitro synthesized sgRNA. As a result, galactaric acid catabolism was disrupted. An engineered A. niger strain combining the disrupted galactaric and d-galacturonic acid catabolism with an expression of a heterologous uronate dehydrogenase produced galactaric acid from d-galacturonic acid. The resulting strain was also converting pectin-rich biomass to galactaric acid in a consolidated bioprocess.ConclusionsIn the present study, we demonstrated the use of CRISPR/Cas9 mediated gene deletion technology in A. niger in an metabolic engineering application. As a result, a strain for the efficient production of galactaric acid from d-galacturonic acid was generated. The present study highlights the usefulness of CRISPR/Cas9 technology in the metabolic engineering of filamentous fungi.


Microbial Cell Factories | 2015

Metabolic engineering of the fungal D-galacturonate pathway for L-ascorbic acid production

Joosu Kuivanen; Merja Penttilä; Peter Richard

BackgroundSynthetic L-ascorbic acid (vitamin C) is widely used as a preservative and nutrient in food and pharmaceutical industries. In the current production method, D-glucose is converted to L-ascorbic acid via several biochemical and chemical steps. The main source of L-ascorbic acid in human nutrition is plants. Several alternative metabolic pathways for L-ascorbic acid biosynthesis are known in plants. In one of them, D-galacturonic acid is the precursor. D-Galacturonic acid is also the main monomer in pectin, a plant cell wall polysaccharide. Pectin is abundant in biomass and is readily available from several waste streams from fruit and sugar processing industries.ResultsIn the present work, we engineered the filamentous fungus Aspergillus niger for the conversion of D-galacturonic acid to L-ascorbic acid. In the generated pathway, the native D-galacturonate reductase activity was utilized while the gene coding for the second enzyme in the fungal D-galacturonic acid pathway, an L-galactonate consuming dehydratase, was deleted. Two heterologous genes coding for enzymes from the plant L-ascorbic acid pathway – L-galactono-1,4-lactone lactonase from Euglena gracilis (EgALase) and L-galactono-1,4-lactone dehydrogenase from Malpighia glabra (MgGALDH) – were introduced into the A. niger strain. Alternatively, an unspecific L-gulono-1,4-lactone lactonase (smp30) from the animal L-ascorbic acid pathway was introduced in the fungal strain instead of the plant L-galactono-1,4-lactone lactonase. In addition, a strain with the production pathway inducible with D-galacturonic acid was generated by using a bidirectional and D-galacturonic acid inducible promoter from the fungus. Even though, the lactonase enzyme activity was not observed in the resulting strains, they were capable of producing L-ascorbic acid from pure D-galacturonic acid or pectin-rich biomass in a consolidated bioprocess. Product titers up to 170 mg/l were achieved.ConclusionsIn the current study, an L-ascorbic acid pathway using D-galacturonic acid as a precursor was introduced to a microorganism for the first time. This is also the first report on an engineered filamentous fungus for L-ascorbic acid production and a proof-of-concept of consolidated bioprocess for the production.


AMB Express | 2014

Conversion of orange peel to L-galactonic acid in a consolidated process using engineered strains of Aspergillus niger

Joosu Kuivanen; Hugo Dantas; Dominik Mojzita; Edgar Mallmann; Alessandra Biz; Nadia Krieger; David A. Mitchell; Peter Richard

Citrus processing waste is a leftover from the citrus processing industry and is available in large amounts. Typically, this waste is dried to produce animal feed, but sometimes it is just dumped. Its main component is the peel, which consists mostly of pectin, with D-galacturonic acid as the main monomer. Aspergillus niger is a filamentous fungus that efficiently produces pectinases for the hydrolysis of pectin and uses the resulting D-galacturonic acid and most of the other components of citrus peel for growth. We used engineered A. niger strains that were not able to catabolise D-galacturonic acid, but instead converted it to L-galactonic acid. These strains also produced pectinases for the hydrolysis of pectin and were used for the conversion of pectin in orange peel to L-galactonic acid in a consolidated process. The D-galacturonic acid in the orange peel was converted to L-galactonic acid with a yield close to 90%. Submerged and solid-state fermentation processes were compared.


Fungal Genetics and Biology | 2014

Categorisation of sugar acid dehydratases in Aspergillus niger.

Francine A. Motter; Joosu Kuivanen; Hanna Keränen; Satu Hilditch; Merja Penttilä; Peter Richard

In the genome of Aspergillus niger five genes were identified coding for proteins with homologies to sugar acid dehydratases. The open reading frames were expressed in Saccharomyces cerevisiae and the activities tested with a library of sugar acids. Four genes were identified to code for proteins with activities with sugar acids: an l-galactonate dehydratase (gaaB), two d-galactonate dehydratases (dgdA, dgdB) and an l-rhamnonate dehydratase (lraC). The specificities of the proteins were characterised. The l-galactonate dehydratase had highest activity with l-fuconate, however it is unclear whether the enzyme is involved in l-fuconate catabolism. None of the proteins showed activity with galactaric acid or galactarolactone.


Scientific Reports | 2016

A novel pathway for fungal D-glucuronate catabolism contains an L-idonate forming 2-keto-L-gulonate reductase

Joosu Kuivanen; Maura Harumi Sugai-Guérios; Mikko Arvas; Peter Richard

For the catabolism of D-glucuronate, different pathways are used by different life forms. The pathways in bacteria and animals are established, however, a fungal pathway has not been described. In this communication, we describe an enzyme that is essential for D-glucuronate catabolism in the filamentous fungus Aspergillus niger. The enzyme has an NADH dependent 2-keto-L-gulonate reductase activity forming L-idonate. The deletion of the corresponding gene, the gluC, results in a phenotype of no growth on D-glucuronate. The open reading frame of the A. niger 2-keto-L-gulonate reductase was expressed as an active protein in the yeast Saccharomyces cerevisiae. A histidine tagged protein was purified and it was demonstrated that the enzyme converts 2-keto-L-gulonate to L-idonate and, in the reverse direction, L-idonate to 2-keto-L-gulonate using the NAD(H) as cofactors. Such an L-idonate forming 2-keto-L-gulonate dehydrogenase has not been described previously. In addition, the finding indicates that the catabolic D-glucuronate pathway in A. niger differs fundamentally from the other known D-glucuronate pathways.


Frontiers in Microbiology | 2017

Clustered Genes Encoding 2-Keto-l-Gulonate Reductase and l-Idonate 5-Dehydrogenase in the Novel Fungal d-Glucuronic Acid Pathway

Joosu Kuivanen; Mikko Arvas; Peter Richard

D-Glucuronic acid is a biomass component that occurs in plant cell wall polysaccharides and is catabolized by saprotrophic microorganisms including fungi. A pathway for D-glucuronic acid catabolism in fungal microorganisms is only partly known. In the filamentous fungus Aspergillus niger, the enzymes that are known to be part of the pathway are the NADPH requiring D-glucuronic acid reductase forming L-gulonate and the NADH requiring 2-keto-L-gulonate reductase that forms L-idonate. With the aid of RNA sequencing we identified two more enzymes of the pathway. The first is a NADPH requiring 2-keto-L-gulonate reductase that forms L-idonate, GluD. The second is a NAD+ requiring L-idonate 5-dehydrogenase forming 5-keto-gluconate, GluE. The genes coding for these two enzymes are clustered and share the same bidirectional promoter. The GluD is an enzyme with a strict requirement for NADP+/NADPH as cofactors. The kcat for 2-keto-L-gulonate and L-idonate is 21.4 and 1.1 s-1, and the Km 25.3 and 12.6 mM, respectively, when using the purified protein. In contrast, the GluE has a strict requirement for NAD+/NADH. The kcat for L-idonate and 5-keto-D-gluconate is 5.5 and 7.2 s-1, and the Km 30.9 and 8.4 mM, respectively. These values also refer to the purified protein. The gluD deletion resulted in accumulation of 2-keto-L-gulonate in the liquid cultivation while the gluE deletion resulted in reduced growth and cessation of the D-glucuronic acid catabolism.


Biotechnology Journal | 2018

A High-Throughput Workflow for CRISPR/Cas9 Mediated Combinatorial Promoter Replacements and Phenotype Characterization in Yeast

Joosu Kuivanen; Sami Holmström; Birgitta Lehtinen; Merja Penttilä; Jussi Jäntti

Due to the rapidly increasing sequence information on gene variants generated by evolution and our improved abilities to engineer novel biological activities, microbial cells can be evolved for the production of a growing spectrum of compounds. For high productivity, efficient carbon channeling towards the end product is a key element. In large scale production systems the genetic modifications that ensure optimal performance cannot be dependent on plasmid-based regulators, but need to be engineered stably into the host genome. Here we describe a CRISPR/Cas9 mediated high-throughput workflow for combinatorial and multiplexed replacement of native promoters with synthetic promoters and the following high-throughput phenotype characterization in the yeast Saccharomyces cerevisiae. The workflow is demonstrated with three central metabolic genes, ZWF1, PGI1 and TKL1 encoding a glucose-6-phosphate dehydrogenase, phosphoglucose isomerase and transketolase, respectively. The synthetic promoter donor DNA libraries were generated by PCR and transformed to yeast cells. A 50% efficiency was achieved for simultaneous replacement at three individual loci using short 60-bp flanking homology sequences in the donor promoters. Phenotypic strain characterization was validated and demonstrated using liquid handling automation and 150 µl cultivation volume in 96-well plate format. The established workflow offers a robust platform for automated engineering and improvement of yeast strains.


ACS Synthetic Biology | 2018

Synthetic Toolkit for Complex Genetic Circuit Engineering in Saccharomyces cerevisiae

Anssi Rantasalo; Joosu Kuivanen; Merja Penttilä; Jussi Jäntti; Dominik Mojzita

Sustainable production of chemicals, materials, and pharmaceuticals is increasingly performed by genetically engineered cell factories. Engineering of complex metabolic routes or cell behavior control systems requires robust and predictable gene expression tools. In this challenging task, orthogonality is a fundamental prerequisite for such tools. In this study, we developed and characterized in depth a comprehensive gene expression toolkit that allows accurate control of gene expression in Saccharomyces cerevisiae without marked interference with native cellular regulation. The toolkit comprises a set of transcription factors, designed to function as synthetic activators or repressors, and transcription-factor-dependent promoters, which together provide a broad expression range surpassing, at high end, the strongest native promoters. Modularity of the developed tools is demonstrated by establishing a novel bistable genetic circuit with robust performance to control a heterologous metabolic pathway and enabling on-demand switching between two alternative metabolic branches.


Nucleic Acids Research | 2018

A universal gene expression system for fungi

Anssi Rantasalo; Christopher Landowski; Joosu Kuivanen; Annakarin Korppoo; Lauri J. Reuter; Outi M. Koivistoinen; Mari Valkonen; Merja Penttilä; Jussi Jäntti; Dominik Mojzita

Abstract Biotechnological production of fuels, chemicals and proteins is dependent on efficient production systems, typically genetically engineered microorganisms. New genome editing methods are making it increasingly easy to introduce new genes and functionalities in a broad range of organisms. However, engineering of all these organisms is hampered by the lack of suitable gene expression tools. Here, we describe a synthetic expression system (SES) that is functional in a broad spectrum of fungal species without the need for host-dependent optimization. The SES consists of two expression cassettes, the first providing a weak, but constitutive level of a synthetic transcription factor (sTF), and the second enabling strong, at will tunable expression of the target gene via an sTF-dependent promoter. We validated the SES functionality in six yeast and two filamentous fungi species in which high (levels beyond organism-specific promoters) as well as adjustable expression levels of heterologous and native genes was demonstrated. The SES is an unprecedentedly broadly functional gene expression regulation method that enables significantly improved engineering of fungi. Importantly, the SES system makes it possible to take in use novel eukaryotic microbes for basic research and various biotechnological applications.

Collaboration


Dive into the Joosu Kuivanen's collaboration.

Top Co-Authors

Avatar

Peter Richard

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Merja Penttilä

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Dominik Mojzita

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Jussi Jäntti

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Anssi Rantasalo

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Outi M. Koivistoinen

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Christopher Landowski

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Mikko Arvas

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Satu Hilditch

VTT Technical Research Centre of Finland

View shared research outputs
Top Co-Authors

Avatar

Alessandra Biz

Federal University of Paraná

View shared research outputs
Researchain Logo
Decentralizing Knowledge