Dominique Balharry
Heriot-Watt University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dominique Balharry.
Particle and Fibre Toxicology | 2014
Vicki Stone; Stefano Pozzi-Mucelli; Lang Tran; Karin Aschberger; Stefania Sabella; Ulla Vogel; Craig A. Poland; Dominique Balharry; Teresa F. Fernandes; Stefania Gottardo; Steven M. Hankin; Mark G. J. Hartl; Nanna B. Hartmann; Danial Hristozov; Kerstin Hund-Rinke; Helinor Johnston; Antonio Marcomini; Oliver Panzer; Davide Roncato; Anne T. Saber; Håkan Wallin; Janeck J. Scott-Fordsmand
BackgroundTo assess the risk of all nanomaterials (NMs) on a case-by-case basis is challenging in terms of financial, ethical and time resources. Instead a more intelligent approach to knowledge gain and risk assessment is required.MethodsA framework of future research priorities was developed from the accorded opinion of experts covering all major stake holder groups (government, industry, academia, funders and NGOs). It recognises and stresses the major topics of physicochemical characterisation, exposure identification, hazard identification and modelling approaches as key components of the current and future risk assessment of NMs.ResultsThe framework for future research has been developed from the opinions of over 80 stakeholders, that describes the research priorities for effective development of an intelligent testing strategy (ITS) to allow risk evaluation of NMs. In this context, an ITS is a process that allows the risks of NMs to be assessed accurately, effectively and efficiently, thereby reducing the need to test NMs on a case-by-case basis.For each of the major topics of physicochemical characterisation, exposure identification, hazard identification and modelling, key-priority research areas are described via a series of stepping stones, or hexagon diagrams structured into a time perspective. Importantly, this framework is flexible, allowing individual stakeholders to identify where their own activities and expertise are positioned within the prioritisation pathway and furthermore to identify how they can effectively contribute and structure their work accordingly. In other words, the prioritisation hexagon diagrams provide a tool that individual stakeholders can adapt to meet their own particular needs and to deliver an ITS for NMs risk assessment. Such an approach would, over time, reduce the need for testing by increasing the reliability and sophistication of in silico approaches.The manuscript includes an appraisal of how this framework relates to the current risk assessment approaches and how future risk assessment could adapt to accommodate these new approaches. A full report is available in electronic format (pdf) at http://www.nano.hw.ac.uk/research-projects/itsnano.html.ConclusionITS-NANO has delivered a detailed, stakeholder driven and flexible research prioritisation (or strategy) tool, which identifies specific research needs, suggests connections between areas, and frames this in a time-perspective.
Clinical and Experimental Pharmacology and Physiology | 2007
Kelly Ann Berube; Dominique Balharry; Keith John Sexton; Lata Koshy; Timothy Peter Jones
1 The general term ‘nanoparticle’ (NP) is used to define any particle less than 100 nm in at least one dimension and NPs are generally classified as natural, anthropogenic or engineered in origin. Anthropogenic, also referred to as ‘ultrafine’ particles (UFPs), are predominately combustion derived and are characterized by having an equivalent spherical diameter less than 100 nm. 2 These particles, considered to be ‘combustion‐derived nanoparticles’ (CDNPs), are of toxicological interest given their nanosized dimensions, with properties not displayed by their macroscopic counterparts. 3 The pulmonary deposition efficiency of inhaled UFPs, along with their large surface areas and bound transition metals, is considered important in driving the emerging health effects linked to respiratory toxicity. 4 The toxicology of CDNPs is currently used to predict the health outcomes in humans following exposure to manufactured NPs. Their similar physicochemistry would suggest similar adverse health effects (i.e. pulmonary (and perhaps cardiac) toxicity). As such, it is essential to fully understand CDNP nanotoxicology in order to minimize occupational and environmental exposure.
Critical Reviews in Toxicology | 2013
Helinor Johnston; Giulio Pojana; Stefano Zuin; Nicklas Raun Jacobsen; Peter Møller; Steffen Loft; Manuela Semmler-Behnke; Catherine McGuiness; Dominique Balharry; Antonio Marcomini; Håkan Wallin; Wolfgang G. Kreyling; Ken Donaldson; Lang Tran; Vicki Stone
PARTICLE_RISK was one of the first multidisciplinary projects funded by the European Commission’s Framework Programme that was responsible for evaluating the implications of nanomaterial (NM) exposure on human health. This project was the basis for this review which identifies the challenges that exist within the assessment of NM risk. We have retrospectively reflected on the findings of completed nanotoxicology studies to consider what progress and advances have been made within the risk assessment of NMs, as well as discussing the direction that nanotoxicology research is taking and identifying the limitations and failings of existing research. We have reflected on what commonly encountered challenges exist and explored how these issues may be resolved. In particular, the following is discussed (i) NM selection (ii) NM physico-chemical characterisation; (iii) NM dispersion; (iv) selection of relevant doses and concentrations; (v) identification of relevant models, target sites and endpoints; (vi) development of alternatives to animal testing; and (vii) NM risk assessment. These knowledge gaps are relatively well recognised by the scientific community and recommendations as to how they may be overcome in the future are provided. It is hoped that this will help develop better defined hypothesis driven research in the future that will enable comprehensive risk assessments to be conducted for NMs. Importantly, the nanotoxicology community has responded and adapted to advances in knowledge over recent years to improve the approaches used to assess NM hazard, exposure and risk. It is vital to learn from existing information provided by ongoing or completed studies to avoid unnecessary duplication of effort, and to offer guidance on aspects of the experimental design that should be carefully considered prior to the start of a new study.
Critical Reviews in Toxicology | 2015
Ali Kermanizadeh; Dominique Balharry; Håkan Wallin; Steffen Loft; Peter Møller
Engineered nanomaterials (NMs) offer great technological advantages but their risks to human health are still not fully understood. An increasing body of evidence suggests that some NMs are capable of distributing from the site of exposure to a number of secondary organs. The research into the toxicity posed by the NMs in these secondary organs is expanding due to the realisation that some materials may reach and accumulate in these target sites. The translocation to secondary organs includes, but is not limited to, the hepatic, central nervous, cardiovascular and renal systems. Current data indicates that pulmonary exposure is associated with low (inhalation route–0.00001–1% of total applied dose–24 h) translocation of virtually insoluble NMs such as iridium, carbon black, gold and polystyrene, while slightly higher translocation has been observed for NMs with either slow (e.g. silver, cerium dioxide and quantum dots) or fast (e.g. zinc oxide) solubility. The translocation of NMs following intratracheal, intranasal and pharyngeal aspiration is higher (up to 10% of administered dose), however the relevance of these routes for risk assessment is questionable. Uptake of the materials from the gastrointestinal tract seems to follow the same pattern as inhalation translocation, whereas the dermal uptake of NMs is generally reported to be low. The toxicological effects in secondary organs include oxidative stress, inflammation, cytotoxicity and dysfunction of cellular and physiological processes. For toxicological and risk evaluation, further information on the toxicokinetics and persistence of NMs is crucial. The overall aim of this review is to outline the data currently available in the literature on the biokinetics, accumulation, toxicity and eventual fate of NMs in order to assess the potential risks posed by NMs to secondary organs.
Pharmacogenetics and Genomics | 2008
Keith John Sexton; Dominique Balharry; Kelly Ann Berube
Background Associations between smoking and the development of tobacco-related diseases in humans have historically been assessed by epidemiological studies. These studies are further complicated by the number of chemicals used in tobacco and individual smoking habits. An alternative approach is required to assess the biological responses. Objective Toxicogenomics was carried out to identify early molecular markers for events in pulmonary injury resulting from tobacco smoke components (TSC) exposure. Materials and methods EpiAirway-100 cells were exposed at the air/liquid interface to representative particle (nicotine; cadmium) and vapour phase [formaldehyde (FA) and ethyl carbamate] components of cigarette smoke. Microarray technology was used to compare expression profiles of human genes associated with toxicity and drug resistance, from control and TSC-treated respiratory epithelium (n=5/dose). Results Using the GEArray ‘toxicology and drug resistance’ microarray followed by significance analysis of microarray analysis, 42 mRNA transcripts were found to be significantly altered by the TSC exposure. The vapour [ethyl carbamate, FA and particle (nicotine, cadmium)] phase TSC exhibited differential transcriptional responses that could not be attributed to their chemical phase. The transcriptional changes could be classified according to a functional family, where ethyl carbamate, FA and cadmium classified as carcinogens, demonstrated the highest gene homology when compared with the noncarcinogen, nicotine. Discussion Analysis of the microarray data and further confirmation (reverse transcriptase-PCR) identified three potential biomarkers for TSC-induced injury. These three genes (CYP7A1, HMOX1 and PTGS1) are highly upregulated and have been linked with mechanistic pathways of disease.
Biomarkers | 2011
Keith John Sexton; Dominique Balharry; Paul Brennan; James Edward McLaren; Ian Andrew Brewis; Kelly Ann Berube
Historically, it has been challenging to go beyond epidemiology to investigate the pathogenic changes caused by tobacco smoking. The EpiAirway-100 (MatTek Corp., Ashland, MA) was employed to investigate the effects of cigarette smoke components. Exposure at the air-liquid-interface represented particle and vapour phase components of cigarette smoke. A proteomic study utilising iTRAQ labelling compared expression profiles. The correlative histopathology revealed focal regions of hyperplasia, hypertrophy, cytolysis and necrosis. We identified 466 proteins, 250 with a parameter of two or more peptides. Four of these proteins are potential markers of lung injury and three are related to mechanistic pathways of disease.
Nanotoxicology | 2014
Ali Kermanizadeh; Caroline Chauché; Dominique Balharry; David M. Brown; Nilesh Kanase; Jorge Boczkowski; Sophie Lanone; Vicki Stone
Abstract Engineered nanoparticles are increasingly used in medical applications and day-to-day consumer products, leading to concerns about the potential environmental and human health impacts. Silver nanoparticles are particularly prevalent because of their use as anti-bacterial agents in many commonly available products. Nanoparticles (NPs) are believed to accumulate, often preferentially, in the liver. This study therefore investigates the effect of a silver NP (20 nm) on the liver, and in particular, the role of Kupffer cells (KCs; resident liver macrophages) in the overall inflammatory response in the organ. Cytokine expression in the normal liver was measured in terms of IL2, IL4, TNF-α, IFN-γ and IL10 released from the organ with significant up-regulation of TNF-α and IL10 being observed. For livers in which the KC population was specifically targeted and destroyed this cytokine increase was significantly decreased in comparison to the normal tissue. IL10 was secreted at approximately three times the concentration of TNF-α in all the test cases. The high levels of IL10 released from the normal tissue in comparison to the KC depleted livers suggest that the cytokine may help to protect against a pro-inflammatory response to these Ag NPs. This may indicate a potentially important role for KCs in the anti-inflammatory response and suggests that tolerance to the Ag NPs is favoured over a fully activated immune response. In addition, albumin production was measured as an indicator of hepatic function. It was noted that the liver function was unaffected by the Ag NPs.
Environmental Science & Technology | 2015
Helen Bridle; Dominique Balharry; Birgit Katja Gaiser; Helinor Johnston
Contaminated drinking water is one of the most important environmental contributors to the human disease burden. Monitoring of water for the presence of pathogens is an essential part of ensuring drinking water safety. In order to assess water quality it is essential to have methods available to sample and detect the type, level and viability of pathogens in water which are effective, cheap, quick, sensitive, and where possible high throughput. Nanotechnology has the potential to drastically improve the monitoring of waterborne pathogens when compared to conventional approaches. To date, there have been no reviews that outline the applications of nanotechnology in this area despite increasing exploitation of nanotechnology for this purpose. This review is therefore the first overview of the state-of-the-art in the application of nanotechnology to waterborne pathogen sampling and detection schemes. Research in this field has been centered on the use of engineered nanomaterials. The effectiveness and limitations of nanomaterial-based approaches is outlined. A future outlook of the advances that are likely to emerge in this area, as well as recommendations for areas of further research are provided.
Biomarkers | 2009
Dominique Balharry; Keith John Sexton; Victor Oreffo; Kelly Ann Berube
Pulmonary fibrosis is a debilitating disease affecting up to 2 million people worldwide, with a median survival rate of only 3 years after diagnosis. The aim of this study was to evaluate a potential protein biomarker (Cocoacrisp, CC) to identify the onset of pulmonary fibrosis. A model of fibrosis was induced via intratracheal instillation of bleomycin, and samples were collected during the early phase of the disease. Immunohistochemical identification of CC was carried out in lung tissue from the bleomycin model. Quantification by image analysis showed CC levels were doubled (p <0.0003), after a single bleomycin dose, but not after double instillation. Microscopic analysis revealed that CC signal was primarily detected on the alveolar surface. The secretion of the novel protein CC during the early stages of bleomycin-induced injury may have the potential to be utilized as a clinical biomarker for the early stages of fibrosis, particularly as it may be detectable in bronchoalveolar lavage fluid.
Toxicology | 2008
Dominique Balharry; Keith John Sexton; Kelly Ann Berube