Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nicole Froger is active.

Publication


Featured researches published by Nicole Froger.


PLOS Biology | 2009

Turning meiosis into mitosis.

Isabelle d'Erfurth; Sylvie Jolivet; Nicole Froger; Olivier Catrice; Maria Novatchkova; Raphael Mercier

The mutation of as few as three genes in a sexual plant transforms meiosis into mitosis and results in diploid gametes that are genetically identical to the mother plant. This phenotype resembles apomeiosis, which is a major step in apomixis.


Science | 2012

FANCM Limits Meiotic Crossovers

Wayne Crismani; Chloe Girard; Nicole Froger; Mónica Pradillo; Juan L. Santos; Liudmila Chelysheva; Gregory P. Copenhaver; Christine Horlow; Raphael Mercier

No Crossing Over To ensure the correct division of chromosome during the reduction division of meiosis, homologous chromosomes undergo double-strand breaks that—through crossing over and recombination—link the homologs together (and importantly introduce diversity into the genomes of gametes). But only a minority of these crossovers results in recombination—most are directed into non-crossover pathways. Lorenz et al. (p. 1585), working in the yeast Schizosaccharomyces pombe, and Crismani et al. (p. 1588), working in the higher plant Arabidopsis thaliana, looked for the factors that limit crossovers and promote non-crossover pathways. The homolog of the human Fanconi anemia complementation group M (FANCM) helicase protein was found to be a major meiotic anti-recombinase, which could drive meiotic recombination intermediates into the non-crossover pathway. A homolog of a human Fanconi anemia complementation group protein is involved in controlling crossing over during meiosis. The number of meiotic crossovers (COs) is tightly regulated within a narrow range, despite a large excess of molecular precursors. The factors that limit COs remain largely unknown. Here, using a genetic screen in Arabidopsis thaliana, we identified the highly conserved FANCM helicase, which is required for genome stability in humans and yeasts, as a major factor limiting meiotic CO formation. The fancm mutant has a threefold-increased CO frequency as compared to the wild type. These extra COs arise not from the pathway that accounts for most of the COs in wild type, but from an alternate, normally minor pathway. Thus, FANCM is a key factor imposing an upper limit on the number of meiotic COs, and its manipulation holds much promise for plant breeding.


PLOS Genetics | 2008

Mutations in AtPS1 (Arabidopsis thaliana Parallel Spindle 1) Lead to the Production of Diploid Pollen Grains

Isabelle d'Erfurth; Sylvie Jolivet; Nicole Froger; Olivier Catrice; Maria Novatchkova; Mathieu Simon; Eric Jenczewski; Raphael Mercier

Polyploidy has had a considerable impact on the evolution of many eukaryotes, especially angiosperms. Indeed, most—if not all—angiosperms have experienced at least one round of polyploidy during the course of their evolution, and many important crop plants are current polyploids. The occurrence of 2n gametes (diplogametes) in diploid populations is widely recognised as the major source of polyploid formation. However, limited information is available on the genetic control of diplogamete production. Here, we describe the isolation and characterisation of the first gene, AtPS1 (Arabidopsis thaliana Parallel Spindle 1), implicated in the formation of a high frequency of diplogametes in plants. Atps1 mutants produce diploid male spores, diploid pollen grains, and spontaneous triploid plants in the next generation. Female meiosis is not affected in the mutant. We demonstrated that abnormal spindle orientation at male meiosis II leads to diplogamete formation. Most of the parents heterozygosity is therefore conserved in the Atps1 diploid gametes, which is a key issue for plant breeding. The AtPS1 protein is conserved throughout the plant kingdom and carries domains suggestive of a regulatory function. The isolation of a gene involved in diplogamete production opens the way for new strategies in plant breeding programmes and progress in evolutionary studies.


Theoretical and Applied Genetics | 2002

From Arabidopsis thaliana to Brassica napus: development of amplified consensus genetic markers (ACGM) for construction of a gene map

M. Fourmann; Pierre Barret; Nicole Froger; C. Baron; F. Charlot; Régine Delourme; Dominique Brunel

Abstract.The evolution of genomes can be studied by comparing maps of homologous genes which show changes in nucleic acid sequences and chromosome rearrangements. In this study, we developed a set of 32 amplified consensus gene markers (ACGMs) that amplified gene sequences from Arabidopsis thaliana and Brassica napus. Our methodology, based on PCR, facilitated the rapid sequencing of homologous genes from various species of the same phylogenetic family and the detection of intragenic polymorphism. We found that such polymorphism principally concerned intron sequences and we used it to attribute a Brassica oleracea or Brassica rapa origin to the B. napus sequences and to map 43 rapeseed genes. We confirm that the genetic position of homologous genes varied between B. napus and A. thaliana. ACGMs are a useful tool for genome evolution studies and for the further development of single nucleotide polymorphism suitable for use in genetic mapping and genetic diversity analyses.


Current Biology | 2008

SHOC1, an XPF endonuclease-related protein, is essential for the formation of class I meiotic crossovers.

Nicolas Macaisne; Maria Novatchkova; Lucie Peirera; Daniel Vezon; Sylvie Jolivet; Nicole Froger; Liudmila Chelysheva; Mathilde Grelon; Raphael Mercier

Crossovers (COs) are essential for the completion of meiosis in most species and lead to new allelic combinations in gametes. Two pathways of meiotic crossover formation have been distinguished. Class I COs, which are the major class of CO in budding yeast, mammals, Caenorhabditis elegans, and Arabidopsis, depend on a group of proteins called ZMM and rely on specific DNA structure intermediates that are processed to form COs. We identified a novel gene, SHOC1, involved in meiosis in Arabidopsis. Shoc1 mutants showed a striking reduction in the number of COs produced, a similar phenotype to the previously described Arabidopsis zmm mutants. The early steps of recombination, revealed by DMC1 foci, and completion of synapsis are not affected in shoc1 mutants. Double mutant analysis showed that SHOC1 acts in the same pathway as AtMSH5, a conserved member of the ZMM group. SHOC1 is thus a novel gene required for class I CO formation in Arabidopsis. Sequence similarity studies detected putative SHOC1 homologs in a large range of eukaryotes including human. SHOC1 appears to be related to the XPF endonuclease protein family, which suggests that it is directly involved in the maturation of DNA intermediates that lead to COs.


Genes to Cells | 2006

Non conservation of the meiotic function of the Ski8/Rec103 homolog in Arabidopsis

Sylvie Jolivet; Daniel Vezon; Nicole Froger; Raphael Mercier

Meiotic recombination involves the formation and repair of DNA double‐strand breaks (DSB). One of the genes required for DSB formation in the yeast Saccharomyces cerevisiae, Ski8/Rec103, is intriguing because it also plays a role in cytoplasmic RNA metabolism, a function difficult to relate to DSB formation. The meiotic role of Ski8 is conserved in several fungi, but has not been investigated outside this kingdom. We identified the Ski8 homolog in Arabidopsis thaliana and isolated two mutants. We showed that the Arabidopsis Ski8 homolog was required for normal plant development and growth, suggesting a conserved somatic function, but that it was not required for meiotic recombination or progression. The data presented here provide strong evidence that the meiotic role of Ski8 is not conserved in Arabidopsis and sequence analysis suggests that this may also be the case in a range of other species.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Multiple mechanisms limit meiotic crossovers: TOP3α and two BLM homologs antagonize crossovers in parallel to FANCM

Mathilde Séguéla-Arnaud; Wayne Crismani; Cécile Larchevêque; Julien Mazel; Nicole Froger; Sandrine Choinard; Afef Lemhemdi; Nicolas Macaisne; Jelle Van Leene; Kris Gevaert; Geert De Jaeger; Liudmilla Chelysheva; Raphael Mercier

Significance During meiosis, crossovers (COs) reshuffle homologous chromosomes, generating genetic diversity on which natural or human selection can act. However, CO numbers typically are very low, raising questions about the evolutionary forces that impose this constraint and limiting the efficiency of breeding programs. Here, we identified anti-CO factors in Arabidopsis and showed that several mechanisms actively antagonize CO formation in parallel. Disrupting these anti-CO factors provokes a large increase in CO frequency without affecting meiotic progression. These results suggest that COs are restrained not because a high number would impair chromosome segregation but because excessive recombination could break favorable genetic combinations built by past selection. These findings hold great promise for improving the efficiency of plant breeding programs. Meiotic crossovers (COs) have two important roles, shuffling genetic information and ensuring proper chromosome segregation. Despite their importance and a large excess of precursors (i.e., DNA double-strand breaks, DSBs), the number of COs is tightly regulated, typically one to three per chromosome pair. The mechanisms ensuring that most DSBs are repaired as non-COs and the evolutionary forces imposing this constraint are poorly understood. Here we identified Topoisomerase3α (TOP3α) and the RECQ4 helicases—the Arabidopsis slow growth suppressor 1 (Sgs1)/Bloom syndrome protein (BLM) homologs—as major barriers to meiotic CO formation. First, the characterization of a specific TOP3α mutant allele revealed that, in addition to its role in DNA repair, this topoisomerase antagonizes CO formation. Further, we found that RECQ4A and RECQ4B constitute the strongest meiotic anti-CO activity identified to date, their concomitant depletion leading to a sixfold increase in CO frequency. In both top3α and recq4ab mutants, DSB number is unaffected, and extra COs arise from a normally minor pathway. Finally, both TOP3α and RECQ4A/B act independently of the previously identified anti-CO Fanconi anemia of complementation group M (FANCM) helicase. This finding shows that several parallel pathways actively limit CO formation and suggests that the RECQA/B and FANCM helicases prevent COs by processing different substrates. Despite a ninefold increase in CO frequency, chromosome segregation was unaffected. This finding supports the idea that CO number is restricted not because of mechanical constraints but likely because of the long-term costs of recombination. Furthermore, this work demonstrates how manipulating a few genes holds great promise for increasing recombination frequency in plant-breeding programs.


Nucleic Acids Research | 2014

FANCM-associated proteins MHF1 and MHF2, but not the other Fanconi anemia factors, limit meiotic crossovers

Chloe Girard; Wayne Crismani; Nicole Froger; Julien Mazel; Afef Lemhemdi; Christine Horlow; Raphael Mercier

Genetic recombination is important for generating diversity and to ensure faithful segregation of chromosomes at meiosis. However, few crossovers (COs) are formed per meiosis despite an excess of DNA double-strand break precursors. This reflects the existence of active mechanisms that limit CO formation. We previously showed that AtFANCM is a meiotic anti-CO factor. The same genetic screen now identified AtMHF2 as another player of the same anti-CO pathway. FANCM and MHF2 are both Fanconi Anemia (FA) associated proteins, prompting us to test the other FA genes conserved in Arabidopsis for a role in CO control at meiosis. This revealed that among the FA proteins tested, only FANCM and its two DNA-binding co-factors MHF1 and MHF2 limit CO formation at meiosis.


PLOS Genetics | 2015

AAA-ATPase FIDGETIN-LIKE 1 and Helicase FANCM Antagonize Meiotic Crossovers by Distinct Mechanisms

Chloe Girard; Liudmila Chelysheva; Sandrine Choinard; Nicole Froger; Nicolas Macaisne; Afef Lehmemdi; Julien Mazel; Wayne Crismani; Raphael Mercier

Meiotic crossovers (COs) generate genetic diversity and are critical for the correct completion of meiosis in most species. Their occurrence is tightly constrained but the mechanisms underlying this limitation remain poorly understood. Here we identified the conserved AAA-ATPase FIDGETIN-LIKE-1 (FIGL1) as a negative regulator of meiotic CO formation. We show that Arabidopsis FIGL1 limits CO formation genome-wide, that FIGL1 controls dynamics of the two conserved recombinases DMC1 and RAD51 and that FIGL1 hinders the interaction between homologous chromosomes, suggesting that FIGL1 counteracts DMC1/RAD51-mediated inter-homologue strand invasion to limit CO formation. Further, depleting both FIGL1 and the previously identified anti-CO helicase FANCM synergistically increases crossover frequency. Additionally, we showed that the effect of mutating FANCM on recombination is much lower in F1 hybrids contrasting from the phenotype of inbred lines, while figl1 mutation equally increases crossovers in both contexts. This shows that the modes of action of FIGL1 and FANCM are differently affected by genomic contexts. We propose that FIGL1 and FANCM represent two successive barriers to CO formation, one limiting strand invasion, the other disassembling D-loops to promote SDSA, which when both lifted, leads to a large increase of crossovers, without impairing meiotic progression.


PLOS Genetics | 2013

MCM8 Is Required for a Pathway of Meiotic Double-Strand Break Repair Independent of DMC1 in Arabidopsis thaliana

Wayne Crismani; Virginie Portemer; Nicole Froger; Liudmila Chelysheva; Christine Horlow; Nathalie Vrielynck; Raphael Mercier

Mini-chromosome maintenance (MCM) 2–9 proteins are related helicases. The first six, MCM2–7, are essential for DNA replication in all eukaryotes. In contrast, MCM8 is not always conserved in eukaryotes but is present in Arabidopsis thaliana. MCM8 is required for 95% of meiotic crossovers (COs) in Drosophila and is essential for meiosis completion in mouse, prompting us to study this gene in Arabidopsis meiosis. Three allelic Atmcm8 mutants showed a limited level of chromosome fragmentation at meiosis. This defect was dependent on programmed meiotic double-strand break (DSB) formation, revealing a role for AtMCM8 in meiotic DSB repair. In contrast, CO formation was not affected, as shown both genetically and cytologically. The Atmcm8 DSB repair defect was greatly amplified in the absence of the DMC1 recombinase or in mutants affected in DMC1 dynamics (sds, asy1). The Atmcm8 fragmentation defect was also amplified in plants heterozygous for a mutation in either recombinase, DMC1 or RAD51. Finally, in the context of absence of homologous chromosomes (i.e. haploid), mutation of AtMCM8 also provoked a low level of chromosome fragmentation. This fragmentation was amplified by the absence of DMC1 showing that both MCM8 and DMC1 can promote repair on the sister chromatid in Arabidopsis haploids. Altogether, this establishes a role for AtMCM8 in meiotic DSB repair, in parallel to DMC1. We propose that MCM8 is involved with RAD51 in a backup pathway that repairs meiotic DSB without giving CO when the major pathway, which relies on DMC1, fails.

Collaboration


Dive into the Nicole Froger's collaboration.

Top Co-Authors

Avatar

Raphael Mercier

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Dominique Brunel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Régine Delourme

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sylvie Jolivet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Wayne Crismani

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Pierre Barret

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Liudmila Chelysheva

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Xavier Tanguy

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Horlow

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge