Dominique L. Ouellet
Laval University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dominique L. Ouellet.
Nature Structural & Molecular Biology | 2009
Patricia Landry; Isabelle Plante; Dominique L. Ouellet; Marjorie P. Perron; Guy Rousseau; Patrick Provost
Platelets have a crucial role in the maintenance of hemostasis as well as in thrombosis and vessel occlusion, which underlie stroke and acute coronary syndromes. Anucleate platelets contain mRNAs and are capable of protein synthesis, raising the issue of how these mRNAs are regulated. Here we show that human platelets harbor an abundant and diverse array of microRNAs (miRNAs), which are known as key regulators of mRNA translation in other cell types. Further analyses revealed that platelets contain the Dicer and Argonaute 2 (Ago2) complexes, which function in the processing of exogenous miRNA precursors and the control of specific reporter transcripts, respectively. Detection of the receptor P2Y12 mRNA in Ago2 immunoprecipitates suggests that P2Y12 expression may be subjected to miRNA control in human platelets. Our study lends an additional level of complexity to the control of gene expression in these anucleate elements of the cardiovascular system.
Nucleic Acids Research | 2008
Dominique L. Ouellet; Isabelle Plante; Patricia Landry; Corinne Barat; Marie-Ève Janelle; Louis Flamand; Michel J. Tremblay; Patrick Provost
The interaction between human immunodeficiency virus type 1 (HIV-1) and RNA silencing pathways is complex and multifaceted. Essential for efficient viral transcription and supporting Tat-mediated transactivation of viral gene expression, the trans-activation responsive (TAR) element is a structured RNA located at the 5′ end of all transcripts derived from HIV-1. Here, we report that this element is a source of microRNAs (miRNAs) in cultured HIV-1-infected cell lines and in HIV-1-infected human CD4+ T lymphocytes. Using primer extension and ribonuclease (RNase) protection assays, we delineated both strands of the TAR miRNA duplex deriving from a model HIV-1 transcript, namely miR-TAR-5p and miR-TAR-3p. In vitro RNase assays indicate that the lack of a free 3′ extremity at the base of TAR may contribute to its low processing reactivity in vivo. Both miR-TAR-5p and miR-TAR-3p down-regulated TAR miRNA sensor activity in a process that required an integral miRNA-guided RNA silencing machinery. miR-TAR-3p exerted superior gene downregulatory effects, probably due to its preferential release from HIV-1 TAR RNA by the RNase III Dicer. Our study suggests that the TAR element of HIV-1 transcripts releases functionally competent miRNAs upon asymmetrical processing by Dicer, thereby providing novel insights into viral miRNA biogenesis.
BioMed Research International | 2006
Dominique L. Ouellet; Marjorie P. Perron; Lise-Andrée Gobeil; Pierre Plante; Patrick Provost
Encoded by the genome of most eukaryotes examined so far, microRNAs (miRNAs) are small ∼ 21-nucleotide (nt) noncoding RNAs (ncRNAs) derived from a biosynthetic cascade involving sequential processing steps executed by the ribonucleases (RNases) III Drosha and Dicer. Following their recent identification, miRNAs have rapidly taken the center stage as key regulators of gene expression. In this review, we will summarize our current knowledge of the miRNA biosynthetic pathway and its protein components, as well as the processes it regulates via miRNAs, which are known to exert a variety of biological functions in eukaryotes. Although the relative importance of miRNAs remains to be fully appreciated, deregulated protein expression resulting from either dysfunctional miRNA biogenesis or abnormal miRNA-based gene regulation may represent a key etiologic factor in several, as yet unidentified, diseases. Hence is our need to better understand the complexity of the basic mechanisms underlying miRNA biogenesis and function.
BioMed Research International | 2006
Isabelle Plante; Laetitia Davidovic; Dominique L. Ouellet; Lise-Andrée Gobeil; Sandra Tremblay; Edouard W. Khandjian; Patrick Provost
In mammalian cells, fragile X mental retardation protein (FMRP) has been reported to be part of a microRNA (miRNA)-containing effector ribonucleoprotien (RNP) complex believed to mediate translational control of specific mRNAs. Here, using recombinant proteins, we demonstrate that human FMRP can act as a miRNA acceptor protein for the ribonuclease Dicer and facilitate the assembly of miRNAs on specific target RNA sequences. The miRNA assembler property of FMRP was abrogated upon deletion of its single-stranded (ss) RNA binding K-homology domains. The requirement of FMRP for efficient RNA interference (RNAi) in vivo was unveiled by reporter gene silencing assays using various small RNA inducers, which also supports its involvement in an ss small interfering RNA (siRNA)-containing RNP (siRNP) effector complex in mammalian cells. Our results define a possible role for FMRP in RNA silencing and may provide further insight into the molecular defects in patients with the fragile X syndrome.
Molecular therapy. Nucleic acids | 2016
Jean-Paul Iyombe-Engembe; Dominique L. Ouellet; Xavier Barbeau; Pierre Chapdelaine; Patrick Lagüe; Jacques P. Tremblay
The CRISPR/Cas9 system is a great revolution in biology. This technology allows the modification of genes in vitro and in vivo in a wide variety of living organisms. In most Duchenne muscular dystrophy (DMD) patients, expression of dystrophin (DYS) protein is disrupted because exon deletions result in a frame shift. We present here the CRISPR-induced deletion (CinDel), a new promising genome-editing technology to correct the DMD gene. This strategy is based on the use of two gRNAs targeting specifically exons that precede and follow the patient deletion in the DMD gene. This pair of gRNAs induced a precise large additional deletion leading to fusion of the targeted exons. Using an adequate pair of gRNAs, the deletion of parts of these exons and the intron separating them restored the DMD reading frame in 62% of the hybrid exons in vitro in DMD myoblasts and in vivo in electroporated hDMD/mdx mice. Moreover, adequate pairs of gRNAs also restored the normal spectrin-like repeat of the dystrophin rod domain; such restoration is not obtained by exon skipping or deletion of complete exons. The expression of an internally deleted DYS protein was detected following the formation of myotubes by the unselected, treated DMD myoblasts. Given that CinDel induces permanent reparation of the DMD gene, this treatment would not have to be repeated as it is the case for exon skipping induced by oligonucleotides.
Retrovirology | 2013
Dominique L. Ouellet; Jimmy Vigneault-Edwards; Kevin Létourneau; Lise-Andrée Gobeil; Isabelle Plante; John C. Burnett; John J. Rossi; Patrick Provost
BackgroundThe transactivating response (TAR) element of human immunodeficiency virus type 1 (HIV-1) is the source of two functional microRNAs (miRNAs), miR-TAR-5p and miR-TAR-3p. The objective of this study was to characterize the post-transcriptional regulation of host messenger RNAs (mRNAs) relevant to HIV-1 pathogenesis by HIV-1 TAR miRNAs.ResultsWe demonstrated that TAR miRNAs derived from HIV-1 can incorporate into host effector Argonaute protein complexes, which is required if these miRNAs are to regulate host mRNA expression. Bioinformatic predictions and reporter gene activity assays identified regulatory elements complementary and responsive to miR-TAR-5p and miR-TAR-3p in the 3’ untranslated region (UTR) of several candidate genes involved in apoptosis and cell survival. These include Caspase 8, Aiolos, Ikaros and Nucleophosmin (NPM)/B23. Analyses of Jurkat cells that stably expressed HIV-1 TAR or contained a full-length latent HIV provirus suggested that HIV-1 TAR miRNAs could regulate the expression of genes in T cells that affect the balance between apoptosis and cell survival.ConclusionsHIV-1 TAR miRNAs may contribute to the replication cycle and pathogenesis of HIV-1, by regulating host genes involved in the intricate balance between apoptosis and infected cell, to induce conditions that promote HIV-1 propagation and survival.
Biochimica et Biophysica Acta | 2009
Vildan Dincbas-Renqvist; Geneviève Pépin; Marija Rakonjac; Isabelle Plante; Dominique L. Ouellet; Andreas Hermansson; Isabelle Goulet; Johanne Doucet; Bengt Samuelsson; Olof Rådmark; Patrick Provost
Dicer is a multidomain ribonuclease III enzyme involved in the biogenesis of microRNAs (miRNAs) in the vast majority of eukaryotes. In human, Dicer has been shown to interact with cellular proteins via its N-terminal domain. Here, we demonstrate the ability of Dicer C-terminus to interact with 5-lipoxygenase (5LO), an enzyme involved in the biosynthesis of inflammatory mediators, in vitro and in cultured human cells. Yeast two-hybrid and GST binding assays delineated the smallest 5-lipoxygenase binding domain (5LObd) of Dicer to its C-terminal 140 amino acids comprising the double-stranded RNA (dsRNA) binding domain (dsRBD). The Dicer 5LObd-5LO association was disrupted upon Ala substitution of Trp residues 13, 75 and 102 in 5LO, suggesting that the Dicer 5LObd may recognize 5LO via its N-terminal C2-like domain. Whereas a catalytically active 5LObd-containing Dicer fragment was found to enhance 5LO enzymatic activity in vitro, human 5LO modified the miRNA precursor processing activity of Dicer. Providing a link between miRNA-mediated regulation of gene expression and inflammation, our results suggest that the formation of miRNAs may be regulated by 5LO in leukocytes and cancer cells expressing this lipoxygenase.
Methods of Molecular Biology | 2007
Marjorie P. Perron; Boissonneault; Gobeil La; Dominique L. Ouellet; Patrick Provost
With potentially up to 1000 microRNAs (miRNAs) present in the human genome, altogether regulating the expression of thousands of genes, one can anticipate that miRNAs will play a significant role in health and disease. Deregulated protein expression induced by a dysfunctional miRNA-based regulatory system is thus expected to lead to the development of serious, if not lethal, genetic diseases. A relationship among miRNAs, Dicer, and cancer has recently been suggested. Further investigations will help establish specific causal links between dysfunctional miRNAs and diseases. miRNAs of foreign origin, e.g., viruses, may also be used as specific markers of viral infections. In these cases, miRNA expression profiles could represent a powerful diagnostic tool. Regulatory RNAs may also have therapeutic applications, by which disease-causing genes or viral miRNAs could be neutralized, or functional miRNAs be restored. Will bedside miRNA expression profiling eventually assist physicians in providing patients with accurate diagnosis, personalized therapy, and treatment outcome?
Human Gene Therapy | 2012
Janet Chung; Jane Zhang; Haitang Li; Dominique L. Ouellet; David DiGiusto; John J. Rossi
Combinational therapy with small RNA inhibitory agents against multiple viral targets allows efficient inhibition of viral production by controlling gene expression at critical time points. Here we explore combinations of different classes of therapeutic anti-HIV-1 RNAs expressed from within the context of an intronic MCM7 (minichromosome maintenance complex component-7) platform that naturally harbors 3 microRNAs (miRNAs). We replaced the endogenous miRNAs with anti-HIV small RNAs, including small interfering RNAs (siRNAs) targeting HIV-1 tat and rev messages that function to induce post-transcriptional gene silencing by the RNA interference pathway, a nucleolar-localizing RNA ribozyme that targets the conserved U5 region of HIV-1 transcripts for degradation, and finally nucleolar trans-activation response (TAR) and Rev-binding element (RBE) RNA decoys designed to sequester HIV-1 Tat and Rev proteins inside the nucleolus. We demonstrate the versatility of the MCM7 platform in expressing and efficiently processing the siRNAs as miRNA mimics along with nucleolar small RNAs. Furthermore, three of the combinatorial constructs tested potently suppressed viral replication during a 1-month HIV challenge, with greater than 5-log inhibition compared with untransduced, HIV-1-infected CEM T lymphocytes. One of the most effective constructs contains an anti-HIV siRNA combined with a nucleolar-localizing U5 ribozyme and TAR decoy. This represents the first efficacious example of combining Drosha-processed siRNAs with small nucleolar ribonucleoprotein (snoRNP)-processed nucleolar RNA chimeras from a single intron platform for effective inhibition of viral replication. Moreover, we demonstrated enrichment/selection for cells expressing levels of the antiviral RNAs that provide optimal inhibition under the selective pressure of HIV. The combinations of si/snoRNAs represent a new paradigm for combinatorial RNA-based gene therapy applications.
Archive | 2018
Benjamin Duchêne; Jean-Paul Iyombe-Engembe; Jacques P. Tremblay; Dominique L. Ouellet
The discovery of the CRISPR-Cas9 system raises hope for the treatment of many genetic disorders. We describe here an approach based on the use of a pair of single guide RNAs to form a hybrid exon that does not only restore the dystrophin gene reading frame but also results in the production of a dystrophin protein with an adequate structure of the central rod-domain, with a correct spectrin-like repeat. The therapeutic approach described here involved DMD patient cells having a deletion of exons 51-53 of the DMD gene.