Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Aysegul Nalca is active.

Publication


Featured researches published by Aysegul Nalca.


Nature Medicine | 2005

Smallpox vaccine–induced antibodies are necessary and sufficient for protection against monkeypox virus

Yvette Edghill-Smith; Hana Golding; Jody Manischewitz; Lisa R. King; Dorothy E. Scott; Mike Bray; Aysegul Nalca; Jay W. Hooper; Chris A Whitehouse; Joern E. Schmitz; Keith A. Reimann; Genoveffa Franchini

Vaccination with live vaccinia virus affords long-lasting protection against variola virus, the agent of smallpox. Its mode of protection in humans, however, has not been clearly defined. Here we report that vaccinia-specific B-cell responses are essential for protection of macaques from monkeypox virus, a variola virus ortholog. Antibody-mediated depletion of B cells, but not CD4+ or CD8+ T cells, abrogated vaccine-induced protection from a lethal intravenous challenge with monkeypox virus. In addition, passive transfer of human vaccinia-neutralizing antibodies protected nonimmunized macaques from severe disease. Thus, vaccines able to induce long-lasting protective antibody responses may constitute realistic alternatives to the currently available smallpox vaccine (Dryvax).


Journal of Immunology | 2006

Subunit Recombinant Vaccine Protects against Monkeypox

Jean-Michel Heraud; Yvette Edghill-Smith; Victor I. Ayala; Irene Kalisz; Janie Parrino; V. S. Kalyanaraman; Jody Manischewitz; Lisa R. King; Anna Hryniewicz; Christopher J. Trindade; Meredith Hassett; Wen-Po Tsai; David Venzon; Aysegul Nalca; Monica Vaccari; Peter Silvera; Mike Bray; Barney S. Graham; Hana Golding; Jay W. Hooper; Genoveffa Franchini

The smallpox vaccine Dryvax, a live vaccinia virus (VACV), protects against smallpox and monkeypox, but is contraindicated in immunocompromised individuals. Because Abs to VACV mediate protection, a live virus vaccine could be substituted by a safe subunit protein-based vaccine able to induce a protective Ab response. We immunized rhesus macaques with plasmid DNA encoding the monkeypox orthologs of the VACV L1R, A27L, A33R, and B5R proteins by the intradermal and i.m. routes, either alone or in combination with the equivalent recombinant proteins produced in Escherichia coli. Animals that received only DNA failed to produce high titer Abs, developed innumerable skin lesions after challenge, and died in a manner similar to placebo controls. By contrast, the animals vaccinated with proteins developed moderate to severe disease (20–155 skin lesions) but survived. Importantly, those immunized with DNA and boosted with proteins had mild disease with 15 or fewer lesions that resolved within days. DNA/protein immunization elicited Th responses and binding Ab titers to all four proteins that correlated negatively with the total lesion number. The sera of the immunized macaques recognized a limited number of linear B cell epitopes that are highly conserved among orthopoxviruses. Their identification may guide future efforts to develop simpler, safer, and more effective vaccines for monkeypox and smallpox.


Antiviral Research | 2004

Antiviral activity of hop constituents against a series of DNA and RNA viruses

Richard Wilson; Aysegul Nalca; Brigitte B Beer; Thomas G. Voss; Jim A Turpin; Robert W. Buckheit; Jiayi Wei; Michelle Wenzel-Mathers; Eve M Walton; Robert J. Smith; Melanie Pallansch; Priscilla Ward; Jay Wells; Lara Chuvala; Sandra Sloane; Robin L. Paulman; Julie Russell; Tracy L. Hartman; Roger G. Ptak

We investigated whether crude hop extracts and purified hop components representing every major chemical class of hop compound have antiviral activity. These hop constituents were tested for antiviral activity against bovine viral diarrhea virus (BVDV) as a surrogate model of hepatitis C virus (HCV), human immunodeficiency virus (HIV), influenza A virus (FLU-A), influenza B virus (FLU-B), rhinovirus (Rhino), respiratory syncytial virus (RSV), yellow fever virus (YFV), cytomegalovirus (CMV), hepatitis B virus (HBV), and herpes simplex virus type 1 (HSV-1) and type 2 (HSV-2). The extracts all failed to prevent the replication of HIV, FLU-A, FLU-B, RSV and YFV. A xanthohumol-enriched hop extract displayed a weak to moderate antiviral activity against BVDV (therapeutic index (TI)=6.0), HSV-2 (TI=>5.3), Rhino (TI=4.0) and HSV-1 (TI=>1.9) with IC(50) values in the low microg/ml range. Pure iso-alpha-acids demonstrated low to moderate antiviral activity against both BVDV (TI=9.1) and CMV (TI=4.2) with IC(50) values in the low microg/ml range. No antiviral activity was detected using beta-acids or a hop oil extract. Ultra-pure preparations (>99% pure) were used to show that xanthohumol accounted for the antiviral activity observed in the xanthohumol-enriched hop extract against BVDV, HSV-1 and HSV-2. Xanthohumol was found to be a more potent antiviral agent against these viruses than the isomer iso-xanthohumol. With Rhino, the opposite trend was observed with iso-xanthohumol showing superior antiviral activity to that observed with xanthohumol. Xanthohumol also showed antiviral activity against CMV, suggesting that it might have a generalized anti-herpesvirus antiviral activity. Again, superior antiviral activity was observed with the xanthohumol isomer against CMV. In summary, iso-alpha-acids and xanthohumol were shown to have a low-to-moderate antiviral activity against several viruses. These hop constituents might serve as interesting lead compounds from which more active anti-HCV, anti-Rhino and anti-herpesvirus antiviral agents could be synthesized.


Cellular Microbiology | 2004

Systemic cytokine response in murine anthrax

Serguei G. Popov; Taissia G. Popova; Edith Grene; Francis W. Klotz; Jennifer Cardwell; Chris Bradburne; Yusuf Jama; Matthew Maland; Jay Wells; Aysegul Nalca; Tom Voss; Charles L. Bailey; Ken Alibek

Systemic pro‐inflammatory cytokine release has been previously implicated as a major death‐causing factor in anthrax, however, direct data have been absent. We determined the levels of IL‐1β, IL‐6 and TNF‐α in serum of mice challenged with virulent (Ames) or attenuated (Sterne) strains of Bacillus anthracis. More than 10‐fold increase in the IL‐1β levels was detected in Ames‐challenged Balb/c mice, in contrast to more susceptible C57BL/6 mice, which showed no IL‐1β response. Balb/c mice have also responded with higher levels of IL‐6. The A/J mice demonstrated IL‐1β and IL‐6 systemic response to either Ames or Sterne strain of B. anthracis, whereas no increase in TNF‐α was detected in any murine strain. We used RT‐PCR for gene expression analyses in the liver which often is a major source of cytokines and one of the main targets in infectious diseases. A/J mice challenged with B. anthracis (Sterne) showed increased gene expression for Fas, FasL, Bax, IL‐1β, TNF‐α, TGF‐β, MIP‐1α, KC and RANTES. These data favour the hypothesis that apoptotic cell death during anthrax infection causes chemokine‐induced transmigration of inflammatory cells to vitally important organs such as liver. Administration of caspase inhibitors z‐VAD‐fmk and ac‐YVAD‐cmk improved survival in Sterne‐challenged mice indicating a pathogenic role of apoptosis in anthrax.


The Journal of Infectious Diseases | 2005

Smallpox Vaccine Does Not Protect Macaques with AIDS from a Lethal Monkeypox Virus Challenge

Yvette Edghill Smith; Mike Bray; Chris A. Whitehouse; David Miller; Eric M. Mucker; Jody Manischewitz; Lisa R. King; Marjorie Robert Guroff; Anna Hryniewicz; David Venzon; Clement A. Meseda; Jerry P. Weir; Aysegul Nalca; Virginia Livingston; Jay Wells; Mark G. Lewis; John W. Huggins; Susan H. Zwiers; Hana Golding; Genoveffa Franchini

It is unknown whether smallpox vaccination would protect human immunodeficiency virus type 1 (HIV-1)-infected individuals, because helper CD4(+) cells, the targets of HIV-1 infection, are necessary for the induction of both adaptive CD8(+) cell and B cell responses. We have addressed this question in macaques and have demonstrated that, although smallpox vaccination is safe in immunodeficient macaques when it is preceded by immunization with highly attenuated vaccinia strains, the macaques were not protected against lethal monkeypox virus challenge if their CD4(+) cell count was <300 cells/mm(3). The lack of protection appeared to be associated with a defect in vaccinia-specific immunoglobulin (Ig) switching from IgM to IgG. Thus, vaccination strategies that bypass CD4(+) cell help are needed to elicit IgG antibodies with high affinity and adequate tissue distribution and to restore protection against smallpox in severely immunocompromised individuals.


Drug Design Development and Therapy | 2010

ACAM2000™: The new smallpox vaccine for United States Strategic National Stockpile

Aysegul Nalca; Elizabeth E. Zumbrun

Smallpox was eradicated more than 30 years ago, but heightened concerns over bioterrorism have brought smallpox and smallpox vaccination back to the forefront. The previously licensed smallpox vaccine in the United States, Dryvax® (Wyeth Laboratories, Inc.), was highly effective, but the supply was insufficient to vaccinate the entire current US population. Additionally, Dryvax® had a questionable safety profile since it consisted of a pool of vaccinia virus strains with varying degrees of virulence, and was grown on the skin of calves, an outdated technique that poses an unnecessary risk of contamination. The US government has therefore recently supported development of an improved live vaccinia virus smallpox vaccine. This initiative has resulted in the development of ACAM2000™ (Acambis, Inc.™), a single plaque-purified vaccinia virus derivative of Dryvax®, aseptically propagated in cell culture. Preclinical and clinical trials reported in 2008 demonstrated that ACAM2000™ has comparable immunogenicity to that of Dryvax®, and causes a similar frequency of adverse events. Furthermore, like Dryvax®, ACAM2000™ vaccination has been shown by careful cardiac screening to result in an unexpectedly high rate of myocarditis and pericarditis. ACAM2000™ received US Food and Drug Administration (FDA) approval in August 2007, and replaced Dryvax® for all smallpox vaccinations in February 2008. Currently, over 200 million doses of ACAM2000™ have been produced for the US Strategic National Stockpile. This review of ACAM2000™ addresses the production, characterization, clinical trials, and adverse events associated with this new smallpox vaccine.


Antiviral Research | 2008

Evaluation of orally delivered ST-246 as postexposure prophylactic and antiviral therapeutic in an aerosolized rabbitpox rabbit model

Aysegul Nalca; Josh M. Hatkin; Nicole L. Garza; Donald K. Nichols; Sarah W. Norris; Dennis E. Hruby; Robert Jordan

Orthopoxviruses, such as variola and monkeypox viruses, can cause severe disease in humans when delivered by the aerosol route, and thus represent significant threats to both military and civilian populations. Currently, there are no antiviral therapies approved by the U.S. Food and Drug Administration (FDA) to treat smallpox or monkeypox infection. In this study, we showed that administration of the antiviral compound ST-246 to rabbits by oral gavage, once daily for 14 days beginning 1h postexposure (p.e.), resulted in 100% survival in a lethal aerosolized rabbitpox model used as a surrogate for smallpox. Furthermore, efficacy of delayed treatment with ST-246 was evaluated by beginning treatment on days 1, 2, 3, and 4 p.e. Although a limited number of rabbits showed less severe signs of the rabbitpox disease from the day 1 and day 2 p.e. treatment groups, their illness resolved very quickly, and the survival rates for these group of rabbits were 88% and 100%, respectively. But when the treatment was started on days 3 or 4 p.e., survival was 67% and 33%, respectively. This work suggests that ST-246 is a very potent antiviral compound against aerosolized rabbitpox in rabbits and should be investigated for further development for all orthopoxvirus diseases.


Emerging Infectious Diseases | 2017

High Infection Rates for Adult Macaques after Intravaginal or Intrarectal Inoculation with Zika Virus.

Andrew D. Haddow; Aysegul Nalca; Franco Rossi; Lynn J. Miller; Michael R. Wiley; Unai Pérez-Sautu; Samuel C. Washington; Sarah L. Norris; Suzanne E. Wollen-Roberts; Joshua D. Shamblin; Adrienne E. Kimmel; Holly A. Bloomfield; Stephanie M. Valdez; Thomas R. Sprague; Lucia M. Principe; Stephanie A. Bellanca; Stephanie S. Cinkovich; Luis Lugo-Roman; Lisa H. Cazares; William D. Pratt; Gustavo Palacios; Sina Bavari; M. Louise M. Pitt; Farooq Nasar

Unprotected sexual intercourse between persons residing in or traveling from regions with Zika virus transmission is a risk factor for infection. To model risk for infection after sexual intercourse, we inoculated rhesus and cynomolgus macaques with Zika virus by intravaginal or intrarectal routes. In macaques inoculated intravaginally, we detected viremia and virus RNA in 50% of macaques, followed by seroconversion. In macaques inoculated intrarectally, we detected viremia, virus RNA, or both, in 100% of both species, followed by seroconversion. The magnitude and duration of infectious virus in the blood of macaques suggest humans infected with Zika virus through sexual transmission will likely generate viremias sufficient to infect competent mosquito vectors. Our results indicate that transmission of Zika virus by sexual intercourse might serve as a virus maintenance mechanism in the absence of mosquito-to-human transmission and could increase the probability of establishment and spread of Zika virus in regions where this virus is not present.


Vaccine | 2009

Evaluation of the efficacy of modified vaccinia Ankara (MVA)/IMVAMUNE® against aerosolized rabbitpox virus in a rabbit model

Nicole L. Garza; Josh M. Hatkin; Virginia Livingston; Donald K. Nichols; Paul Chaplin; Ariane Volkmann; Diana Fisher; Aysegul Nalca

Infection of rabbits with aerosolized rabbitpox virus (RPXV) produces a disease similar to monkeypox and smallpox in humans and provides a valuable, informative model system to test medical countermeasures against orthopoxviruses. Due to the eradication of smallpox, the evaluation of the efficacy of new-generation smallpox vaccines depends on relevant well-developed animal studies for vaccine licensure. In this study, we tested the efficacy of IMVAMUNE [modified vaccinia Ankara-Bavarian Nordic (MVA-BN)] for protecting rabbits against aerosolized RPXV. Rabbits were vaccinated with either phosphate-buffered saline (PBS), Dryvax, a single low dose of IMVAMUNE, a single high dose of IMVAMUNE, or twice with a high dose of IMVAMUNE. Aerosol challenge with a lethal dose of RPXV was performed 4 weeks after the last vaccination. All PBS control animals succumbed to the disease or were euthanized because of the disease within 7 days postexposure. The rabbits vaccinated with Dryvax, a low dose of IMVAMUNE, or a single high dose of IMVAMUNE showed minimal to moderate clinical signs of the disease, but all survived the challenge. The only clinical sign displayed by rabbits that had been vaccinated twice with a high dose of IMVAMUNE was mild transient anorexia in just two out of eight rabbits. This study shows that IMVAMUNE can be a very effective vaccine against aerosolized RPXV.


Viruses | 2012

Development of a Murine Model for Aerosolized Ebolavirus Infection Using a Panel of Recombinant Inbred Mice

Elizabeth E. Zumbrun; Nourtan F. Abdeltawab; Holly A. Bloomfield; Taylor B. Chance; Donald K. Nichols; Paige E. Harrison; Malak Kotb; Aysegul Nalca

Countering aerosolized filovirus infection is a major priority of biodefense research. Aerosol models of filovirus infection have been developed in knock-out mice, guinea pigs and non-human primates; however, filovirus infection of immunocompetent mice by the aerosol route has not been reported. A murine model of aerosolized filovirus infection in mice should be useful for screening vaccine candidates and therapies. In this study, various strains of wild-type and immunocompromised mice were exposed to aerosolized wild-type (WT) or mouse-adapted (MA) Ebola virus (EBOV). Upon exposure to aerosolized WT-EBOV, BALB/c, C57BL/6 (B6), and DBA/2 (D2) mice were unaffected, but 100% of severe combined immunodeficiency (SCID) and 90% of signal transducers and activators of transcription (Stat1) knock-out (KO) mice became moribund between 7–9 days post-exposure (dpe). Exposure to MA-EBOV caused 15% body weight loss in BALB/c, but all mice recovered. In contrast, 10–30% lethality was observed in B6 and D2 mice exposed to aerosolized MA-EBOV, and 100% of SCID, Stat1 KO, interferon (IFN)-γ KO and Perforin KO mice became moribund between 7–14 dpe. In order to identify wild-type, inbred, mouse strains in which exposure to aerosolized MA-EBOV is uniformly lethal, 60 BXD (C57BL/6 crossed with DBA/2) recombinant inbred (RI) and advanced RI (ARI) mouse strains were exposed to aerosolized MA-EBOV, and monitored for disease severity. A complete spectrum of disease severity was observed. All BXD strains lost weight but many recovered. However, infection was uniformly lethal within 7 to 12 days post-exposure in five BXD strains. Aerosol exposure of these five BXD strains to 10-fold less MA-EBOV resulted in lethality ranging from 0% in two strains to 90–100% lethality in two strains. Analysis of post-mortem tissue from BXD strains that became moribund and were euthanized at the lower dose of MA-EBOV, showed liver damage in all mice as well as lung lesions in two of the three strains. The two BXD strains that exhibited 90–100% mortality, even at a low dose of airborne MA-EBOV will be useful mouse models for testing vaccines and therapies. Additionally, since disease susceptibility is affected by complex genetic traits, a systems genetics approach was used to identify preliminary gene loci modulating disease severity among the panel BXD strains. Preliminary quantitative trait loci (QTLs) were identified that are likely to harbor genes involved in modulating differential susceptibility to Ebola infection.

Collaboration


Dive into the Aysegul Nalca's collaboration.

Top Co-Authors

Avatar

Donald K. Nichols

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Jay Wells

Southern Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris A. Whitehouse

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Elizabeth E. Zumbrun

United States Army Medical Research Institute of Infectious Diseases

View shared research outputs
Top Co-Authors

Avatar

Genoveffa Franchini

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Hana Golding

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Jody Manischewitz

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Lisa R. King

Center for Biologics Evaluation and Research

View shared research outputs
Top Co-Authors

Avatar

Mike Bray

Southern Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge