Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dong-Hun Bae is active.

Publication


Featured researches published by Dong-Hun Bae.


Biochimica et Biophysica Acta | 2015

Cellular iron uptake, trafficking and metabolism: Key molecules and mechanisms and their roles in disease.

Darius J.R. Lane; Angelica M. Merlot; Michael Li-Hsuan Huang; Dong-Hun Bae; Patric J. Jansson; Sumit Sahni; Danuta S. Kalinowski; Des R. Richardson

Iron is a crucial transition metal for virtually all life. Two major destinations of iron within mammalian cells are the cytosolic iron-storage protein, ferritin, and mitochondria. In mitochondria, iron is utilized in critical anabolic pathways, including: iron-storage in mitochondrial ferritin, heme synthesis, and iron-sulfur cluster (ISC) biogenesis. Although the pathways involved in ISC synthesis in the mitochondria and cytosol have begun to be characterized, many crucial details remain unknown. In this review, we discuss major aspects of the journey of iron from its initial cellular uptake, its modes of trafficking within cells, to an overview of its downstream utilization in the cytoplasm and within mitochondria. The understanding of mitochondrial iron processing and its communication with other organelles/subcellular locations, such as the cytosol, has been elucidated by the analysis of certain diseases e.g., Friedreichs ataxia. Increased knowledge of the molecules and their mechanisms of action in iron processing pathways (e.g., ISC biogenesis) will shape the investigation of iron metabolism in human health and disease.


Carcinogenesis | 2013

Metastasis suppressor, NDRG1, mediates its activity through signaling pathways and molecular motors

Jing Sun; Daohai Zhang; Dong-Hun Bae; Sumit Sahni; Patric J. Jansson; Ying Zheng; Qian Zhao; Fei Yue; Minhua Zheng; Zaklina Kovacevic; Des R. Richardson

The metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1), is negatively correlated with tumor progression in multiple neoplasms, being a promising new target for cancer treatment. However, the precise molecular effects of NDRG1 remain unclear. Herein, we summarize recent advances in understanding the impact of NDRG1 on cancer metastasis with emphasis on its interactions with the key oncogenic nuclear factor-kappaB, phosphatidylinositol-3 kinase/phosphorylated AKT/mammalian target of rapamycin and Ras/Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase signaling pathways. Recent studies demonstrating the inhibitory effects of NDRG1 on the epithelial-mesenchymal transition, a key initial step in metastasis, TGF-β pathway and the Wnt/β-catenin pathway are also described. Furthermore, NDRG1 was also demonstrated to regulate molecular motors in cancer cells, leading to inhibition of F-actin polymerization, stress fiber formation and subsequent reduction of cancer cell migration. Collectively, this review summarizes the underlying molecular mechanisms of the antimetastatic effects of NDRG1 in cancer cells.


Journal of Biological Chemistry | 2014

The Metastasis Suppressor, N-myc Downstream-regulated Gene 1 (NDRG1), Inhibits Stress-induced Autophagy in Cancer Cells

Sumit Sahni; Dong-Hun Bae; Darius J.R. Lane; Zaklina Kovacevic; Danuta S. Kalinowski; Patric J. Jansson; Des R. Richardson

Background: NDRG1 is an important iron-regulated metastasis suppressor that plays an undefined role in the stress response. Results: We demonstrate that NDRG1 suppresses the stress-induced, pro-survival autophagic pathway. Conclusion: Suppression of the autophagic pathway by NDRG1 makes cells more susceptible to apoptosis. Significance: These results indicate an important new mechanism through which NDRG1 exerts its metastasis suppressor activity. N-myc downstream regulated gene 1 (NDRG1) is a potent metastasis suppressor with an undefined role in the stress response. Autophagy is a pro-survival pathway and can be regulated via the protein kinase-like endoplasmic reticulum kinase (PERK)/eIF2α-mediated endoplasmic reticulum (ER) stress pathway. Hence, we investigated the role of NDRG1 in stress-induced autophagy as a mechanism of inhibiting metastasis via the induction of apoptosis. As thiosemicarbazone chelators induce stress and up-regulate NDRG1 to inhibit metastasis, we studied their effects on the ER stress response and autophagy. This was important to assess, as little is understood regarding the role of the stress induced by iron depletion and its role in autophagy. We observed that the chelator, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), which forms redox-active iron and copper complexes, effectively induced ER stress as shown by activation of the PERK/eIF2α pathway. Dp44mT also increased the expression of the autophagic marker, LC3-II, and this was dependent on activation of the PERK/eIF2α axis, as silencing PERK prevented LC3-II accumulation. The effect of Dp44mT on LC3-II expression was at least partially due to iron-depletion, as this effect was also demonstrated with the classical iron chelator, desferrioxamine (DFO), and was not observed for the DFO-iron complex. NDRG1 overexpression also inhibited basal autophagic initiation and the ER stress-mediated autophagic pathway via suppression of the PERK/eIF2α axis. Moreover, NDRG1-mediated suppression of the pro-survival autophagic pathway probably plays a role in its anti-metastatic effects by inducing apoptosis. In fact, multiple pro-apoptotic markers were increased, whereas anti-apoptotic Bcl-2 was decreased upon NDRG1 overexpression. This study demonstrates the role of NDRG1 as an autophagic inhibitor that is important for understanding its mechanism of action.


Nutrients | 2015

Duodenal Cytochrome b (DCYTB) in Iron Metabolism: An Update on Function and Regulation

Darius J.R. Lane; Dong-Hun Bae; Angelica M. Merlot; Sumit Sahni; Des R. Richardson

Iron and ascorbate are vital cellular constituents in mammalian systems. The bulk-requirement for iron is during erythropoiesis leading to the generation of hemoglobin-containing erythrocytes. Additionally, both iron and ascorbate are required as co-factors in numerous metabolic reactions. Iron homeostasis is controlled at the level of uptake, rather than excretion. Accumulating evidence strongly suggests that in addition to the known ability of dietary ascorbate to enhance non-heme iron absorption in the gut, ascorbate regulates iron homeostasis. The involvement of ascorbate in dietary iron absorption extends beyond the direct chemical reduction of non-heme iron by dietary ascorbate. Among other activities, intra-enterocyte ascorbate appears to be involved in the provision of electrons to a family of trans-membrane redox enzymes, namely those of the cytochrome b561 class. These hemoproteins oxidize a pool of ascorbate on one side of the membrane in order to reduce an electron acceptor (e.g., non-heme iron) on the opposite side of the membrane. One member of this family, duodenal cytochrome b (DCYTB), may play an important role in ascorbate-dependent reduction of non-heme iron in the gut prior to uptake by ferrous-iron transporters. This review discusses the emerging relationship between cellular iron homeostasis, the emergent “IRP1-HIF2α axis”, DCYTB and ascorbate in relation to iron metabolism.


Journal of Clinical Pathology | 2013

The role of NDRG1 in the pathology and potential treatment of human cancers

Dong-Hun Bae; Patric J. Jansson; Michael L Huang; Zaklina Kovacevic; Danuta S. Kalinowski; C. Soon Lee; Sumit Sahni; Des R. Richardson

N-myc downstream regulated gene 1 (NDRG1) has been well characterised to act as a metastatic suppressor in a number of human cancers. It has also been implicated to have a significant function in a number of physiological processes such as cellular differentiation and cell cycle. In this review, we discuss the role of NDRG1 in cancer pathology. NDRG1 was observed to be downregulated in the majority of cancers. Moreover, the expression of NDRG1 was found to be significantly lower in neoplastic tissues as compared with normal tissues. The most important function of NDRG1 in inhibiting tumour progression is associated with its ability to suppress metastasis. However, it has also been shown to have important effects on other stages of cancer progression (primary tumour growth and angiogenesis). Recently, novel iron chelators with selective antitumour activity (ie, Dp44mT, DpC) were shown to upregulate NDRG1 in cancer cells. Moreover, Dp44mT showed its antimetastatic potential only in cells expressing NDRG1, making this protein an important therapeutic target for cancer chemotherapy. This observation has led to increased interest in the examination of these novel anticancer agents.


Journal of Biological Chemistry | 2016

The metastasis suppressor, N-myc downstream regulated gene-1 (NDRG1), down-regulates the ErbB family of receptors to inhibit downstream oncogenic signaling pathways

Zaklina Kovacevic; Sharleen V. Menezes; Sumit Sahni; Danuta S. Kalinowski; Dong-Hun Bae; Darius J.R. Lane; Des R. Richardson

N-MYC downstream-regulated gene-1 (NDRG1) is a potent growth and metastasis suppressor that acts through its inhibitory effects on a wide variety of cellular signaling pathways, including the TGF-β pathway, protein kinase B (AKT)/PI3K pathway, RAS, etc. To investigate the hypothesis that its multiple effects could be regulated by a common upstream effector, the role of NDRG1 on the epidermal growth factor receptor (EGFR) and other members of the ErbB family, namely human epidermal growth factor receptor 2 (HER2) and human epidermal growth factor receptor 3 (HER3), was examined. We demonstrate that NDRG1 markedly decreased the expression and activation of EGFR, HER2, and HER3 in response to the epidermal growth factor (EGF) ligand, while also inhibiting formation of the EGFR/HER2 and HER2/HER3 heterodimers. In addition, NDRG1 also decreased activation of the downstream MAPKK in response to EGF. Moreover, novel anti-tumor agents of the di-2-pyridylketone class of thiosemicarbazones, namely di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone and di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone, which markedly up-regulate NDRG1, were found to inhibit EGFR, HER2, and HER3 expression and phosphorylation in cancer cells. However, the mechanism involved appeared dependent on NDRG1 for di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone, but was independent of this metastasis suppressor for di-2-pyridylketone 4-cyclohexyl-4-methyl-3-thiosemicarbazone. This observation demonstrates that small structural changes in thiosemicarbazones result in marked alterations in molecular targeting. Collectively, these results reveal a mechanism for the extensive downstream effects on cellular signaling attributed to NDRG1. Furthermore, this study identifies a novel approach for the treatment of tumors resistant to traditional EGFR inhibitors.


Pharmacological Research | 2017

The mechanistic role of chemically diverse metal ions in the induction of autophagy

Sumit Sahni; Dong-Hun Bae; Patric J. Jansson; Des R. Richardson

Graphical abstract Figure. No Caption available. ABSTRACT Autophagy is an evolutionary conserved cellular catabolic degradation process in response to stress which involves lysosomal degradation of unnecessary or damaged organelles and misfolded proteins. This is primarily a pro‐survival pathway providing the cell with essential nutrients during stressful conditions. There are number of essential metal ions, which are required for normal physiological functioning of cells. Studies have shown that autophagy can be regulated by cellular metal ion concentrations. On the other hand, autophagy is also shown to regulate intracellular levels of certain metal ions. This review discusses recent advances in the research examining the role of metal ions in the autophagic pathway.


Biochimica et Biophysica Acta | 2018

The old and new biochemistry of polyamines

Dong-Hun Bae; Darius J.R. Lane; Patric J. Jansson; Des R. Richardson

Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.


Biochimica et Biophysica Acta | 2017

Transcriptional regulation of the cyclin-dependent kinase inhibitor, p21CIP1/WAF1, by the chelator, Dp44mT

Rayan S. Moussa; Zaklina Kovacevic; Dong-Hun Bae; Darius J.R. Lane; Des R. Richardson

BACKGROUND The cyclin-dependent kinase inhibitor, p21, is well known for its role in cell cycle arrest. Novel anti-cancer agents that deplete iron pools demonstrate marked anti-tumor activity and are also active in regulating p21 expression. These agents induce p21 mRNA levels independently of the tumor suppressor, p53, and differentially regulate p21 protein expression depending on the cell-type. Several chelators, including an analogue of the potent anti-tumor agent, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), have entered clinical trials, and thus, their molecular mechanism of action is crucial to assess. Hence, this investigation examined how several iron chelators transcriptionally regulate p21. METHODS Promoter-deletion constructs; luciferase assays; RT-PCR; western analysis; gene silencing; co-immunoprecipitation. RESULTS The transcriptional regulation of the p21 promoter by iron chelators was demonstrated to be dependent on the chelator and cell-type examined. The potent anti-cancer chelator, Dp44mT, induced p21 promoter activity in SK-MEL-28 melanoma cells, but not in MCF-7 breast cancer cells. Further analysis of the p21 promoter identified a 50-bp region between -104 and -56-bp that was required for Dp44mT-induced activation in SK-MEL-28 cells. This region contained several Sp1-binding sites and mutational analysis of this region revealed the Sp1-3-binding site played a significant role in Dp44mT-induced activation of p21. Further, co-immunoprecipitation demonstrated that Dp44mT induced a marked increase in the interactions between Sp1 and the transcription factors, estrogen receptor-α and c-Jun. CONCLUSIONS AND GENERAL SIGNIFICANCE Dp44mT-induced p21 promoter activation via the Sp1-3-binding site and increased Sp1/ER-α and Sp1/c-Jun complex formation in SK-MEL-28 cells, suggesting these complexes were involved in p21 promoter activation.


Journal of Biological Chemistry | 2018

Tumor stressors induce two mechanisms of intracellular P-glycoprotein–mediated resistance that are overcome by lysosomal-targeted thiosemicarbazones

Lina Al-Akra; Dong-Hun Bae; Sumit Sahni; Michael L.-H. Huang; Kyung Chan Park; Darius J.R. Lane; Patric J. Jansson; Des R. Richardson

Multidrug resistance (MDR) is a major obstacle in cancer treatment due to the ability of tumor cells to efflux chemotherapeutics via drug transporters (e.g. P-glycoprotein (Pgp; ABCB1)). Although the mechanism of Pgp-mediated drug efflux is known at the plasma membrane, the functional role of intracellular Pgp is unclear. Moreover, there has been intense focus on the tumor micro-environment as a target for cancer treatment. This investigation aimed to dissect the effects of tumor micro-environmental stress on subcellular Pgp expression, localization, and its role in MDR. These studies demonstrated that tumor micro-environment stressors (i.e. nutrient starvation, low glucose levels, reactive oxygen species, and hypoxia) induce Pgp-mediated drug resistance. This occurred by two mechanisms, where stressors induced 1) rapid Pgp internalization and redistribution via intracellular trafficking (within 1 h) and 2) hypoxia-inducible factor-1α expression after longer incubations (4–24 h), which up-regulated Pgp and was accompanied by lysosomal biogenesis. These two mechanisms increased lysosomal Pgp and facilitated lysosomal accumulation of the Pgp substrate, doxorubicin, resulting in resistance. This was consistent with lysosomal Pgp being capable of transporting substrates into lysosomes. Hence, tumor micro-environmental stressors result in: 1) Pgp redistribution to lysosomes; 2) increased Pgp expression; 3) lysosomal biogenesis; and 4) potentiation of Pgp substrate transport into lysosomes. In contrast to doxorubicin, when stress stimuli increased lysosomal accumulation of the cytotoxic Pgp substrate, di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone (Dp44mT), this resulted in the agent overcoming resistance. Overall, this investigation describes a novel approach to overcoming resistance in the stressful tumor micro-environment.

Collaboration


Dive into the Dong-Hun Bae's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fei Yue

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge