Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sung Giu Jin is active.

Publication


Featured researches published by Sung Giu Jin.


International Journal of Pharmaceutics | 2008

Development of polyvinyl alcohol–sodium alginate gel-matrix-based wound dressing system containing nitrofurazone

Jong Oh Kim; Jung Kil Park; Jeong Hoon Kim; Sung Giu Jin; Chul Soon Yong; Dong Xun Li; Jun Young Choi; Jong Soo Woo; Bong Kyu Yoo; Won Seok Lyoo; Jung-Ae Kim; Han-Gon Choi

Polyvinyl alcohol (PVA)/sodium alginate (SA) hydrogel matrix-based wound dressing systems containing nitrofurazone (NFZ), a topical anti-infective drug, were developed using freeze-thawing method. Aqueous solutions of nitrofurazone and PVA/SA mixtures in different weight ratios were mixed homogeneously, placed in petri dishes, freezed at -20 degrees C for 18h and thawed at room temperature for 6h, for three consecutive cycles, and evaluated for swelling ratio, tensile strength, elongation and thermal stability of the hydrogel. Furthermore, the drug release from this nitrofurazone-loaded hydrogel, in vitro protein adsorption test and in vivo wound healing observations in rats were performed. Increased SA concentration decreased the gelation%, maximum strength and break elongation, but it resulted into an increment in the swelling ability, elasticity and thermal stability of hydrogel film. However, SA had insignificant effect on the release of nitrofurazone. The amounts of proteins adsorbed on hydrogel were increased with increasing sodium alginate ratio, indicating the reduced blood compatibility. In vivo experiments showed that this hydrogel improved the healing rate of artificial wounds in rats. Thus, PVA/SA hydrogel matrix based wound dressing systems containing nitrofurazone could be a novel approach in wound care.


International Journal of Pharmaceutics | 2010

Gel characterisation and in vivo evaluation of minocycline-loaded wound dressing with enhanced wound healing using polyvinyl alcohol and chitosan.

Jung Hoon Sung; Ma-Ro Hwang; Jong Oh Kim; Jeong Hoon Lee; Yong Il Kim; Jeong Hoon Kim; Sun Woo Chang; Sung Giu Jin; Jung Ae Kim; Won Seok Lyoo; Sung Soo Han; Sae Kwang Ku; Chul Soon Yong; Han-Gon Choi

The purpose of this study was to develop a minocycline-loaded wound dressing with an enhanced healing effect. The cross-linked hydrogel films were prepared with polyvinyl alcohol (PVA) and chitosan using the freeze-thawing method. Their gel properties, in vitro protein adsorption, release, in vivo wound healing effect and histopathology were then evaluated. Chitosan decreased the gel fraction, maximum strength and thermal stability of PVA hydrogel, while it increased the swelling ability, water vapour transmission rate, elasticity and porosity of PVA hydrogel. Incorporation of minocycline (0.25%) did not affect the gel properties, and chitosan hardly affected drug release and protein adsorption. Furthermore, the minocycline-loaded wound dressing composed of 5% PVA, 0.75% chitosan and 0.25% drug was more swellable, flexible and elastic than PVA alone because of relatively weak cross-linking interaction of chitosan with PVA. In wound healing test, this minocycline-loaded PVA-chitosan hydrogel showed faster healing of the wound made in rat dorsum than the conventional product or the control (sterile gauze) due to antifungal activity of chitosan. In particular, from the histological examination, the healing effect of minocycline-loaded hydrogel was greater than that of the drug-loaded hydrogel, indicating the potential healing effect of minocycline. Thus, the minocycline-loaded wound dressing composed of 5% PVA, 0.75% chitosan and 0.25% drug is a potential wound dressing with excellent forming and enhanced wound healing.


International Journal of Nanomedicine | 2016

Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate.

Abid Mehmood Yousaf; Omer Mustapha; Dong Wuk Kim; Dong Shik Kim; Kyeong Soo Kim; Sung Giu Jin; Chul Soon Yong; Yu Seok Youn; Yu-Kyoung Oh; Jong Oh Kim; Han-Gon Choi

Purpose The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Methods Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. Results All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of <200 nm with the drug present in the amorphous state. It demonstrated the highest solubility (32.51±2.41 μg/mL), an excellent dissolution (~85% in 10 minutes), and an oral bioavailability ~2.5-fold better than that of the free drug. It showed similar oral bioavailability compared to the conventional solid dispersion. Conclusion Electrosprayed nanospherules, which provide improved solubility and bioavailability, are promising drug delivery tools for oral administration of poorly water-soluble fenofibrate.


International Journal of Pharmaceutics | 2015

Novel fenofibric acid-loaded controlled release pellet bioequivalent to choline fenofibrate-loaded commercial product in beagle dogs.

Kyung Soo Kim; Sung Giu Jin; Omer Mustapha; Abid Mehmood Yousaf; Dong Wuk Kim; Young Hun Kim; Jong Oh Kim; Chul Soon Yong; Jong Soo Woo; Han-Gon Choi

The objective of this study was to develop a novel fenofibric acid-loaded controlled release pellet showing enhanced, or equivalent to, bioavailability compared with two commercially available products containing fenofibrate or choline fenofibrate. The effect of solubilizing agents on drug solubility and the impact of fillers on core properties were investigated. Among them, magnesium carbonate most improved drug solubility, and κ-carrageenan provided the best spherical cores. The fenofibric acid-loaded pellet was prepared with magnesium carbonate and κ-carrageenan employing the extrusion/spheronizing technique followed by coating with ethylcellulose. Furthermore, dissolution and pharmacokinetic study in beagle dogs were performed compared to the fenofibrate-loaded commercial tablet (FCT) and choline fenofibrate-loaded commercial mini-tablet (CFCM). This fenofibric acid-loaded pellet showed controlled release of the drug in phosphate buffer (pH 6.8) and 0.025 M sodium laurylsulfate within 4h. Furthermore, this pellet and CFCM exhibited similar dissolution profiles. Plasma concentrations greater than 1,000 ng/ml were maintained from 30 min to 8h, suggesting a sustained release pattern. Also, the fenofibric acid-loaded pellet gave significantly higher AUC and Cmax values than FCT, indicating that it improved the bioavailability of fenofibrate due to enhanced solubility and sustained release. In addition, this pellet and CFCM were not significantly different in terms of pharmacokinetic parameters including AUC, Cmax and Tmax. Thus, this pellet was bioequivalent to CFCM in beagle dogs. In conclusion, this fenofibric acid-loaded controlled release pellet would be a potential alternative to the choline fenofibrate-loaded commercial product.


International Journal of Pharmaceutics | 2016

Development of a novel sodium fusidate-loaded triple polymer hydrogel wound dressing: Mechanical properties and effects on wound repair

Sung Giu Jin; Kyeong Soo Kim; Dong Wuk Kim; Dong Shik Kim; Youn Gee Seo; Toe Gyung Go; Yu Seok Youn; Jong Oh Kim; Chul Soon Yong; Han-Gon Choi

To develop a novel sodium fusidate-loaded triple polymer hydrogel dressing (TPHD), numerious polyvinyl alcohol-based (PVA) hydrogel dressings were prepared with various hydrophilic polymers using the freeze-thaw method, and their hydrogel dressing properties were assessed. Among the hydrophilic polymers tested, sodium alginate (SA) improved the swelling capacity the most, and polyvinyl pyrrolidone (PVP) provided the greatest improvement in bioadhesive stength and mechanical properties. Thus, PVA based-TPHDs were prepared using different ratios of PVP:SA. The effect of selected PVP:SA ratios on the swelling capacity, bioadhesive strength, mechanical properties, and drug release, permeation and deposition characteristics of sodium fusidate-loaded PVA-based TPHDs were assessed. As the ratio of PVP:SA increased in PVA-loaded TPHD, the swelling capacity, mechanical properties, drug release, permeation and deposition were improved. The TPHD containing PVA, PVP, SA and sodium fusidate at the weight ratio of 10/6/1/1 showed excellent hydrogel dressing properties, release, permeation and deposition of drug. Within 24h, 71.8 ± 1.3% of drug was released. It permeated 625.1 ± 81.2 μg/cm(2) through the skin and deposited of 313.8 ± 24.1 μg/cm(2) within 24h. The results of in vivo pharmacodynamic studies showed that sodium fusidate-loaded TPHD was more effective in improving the repair process than was a commercial product. Thus, this sodium fusidate-loaded TPHD could be a novel tool in wound care.


International Journal of Pharmaceutics | 2015

Mechanical properties and in vivo healing evaluation of a novel Centella asiatica-loaded hydrocolloid wound dressing.

Sung Giu Jin; Kyung Soo Kim; Abid Mehmood Yousaf; Dong Wuk Kim; Sun Woo Jang; Mi-Won Son; Young Hun Kim; Chul Soon Yong; Jong Oh Kim; Han-Gon Choi

To develop a novel sodium alginate based Centella asiatica (CA)-loaded hydrocolloid wound dressing (HCD) providing excellent mechanical properties and improved wound healing, numerous CA-loaded HCDs were prepared with various ingredients using the hot melting method. The effect of sodium alginate, styrene-isoprene-styrene copolymer (SIS) and petroleum hydrocarbon resin (PHR) on the mechanical properties of CA-loaded HCDs was investigated. The effect of disintegrants on swelling and drug release was assessed. Moreover, the in vivo wound healing potentials of the selected CA-loaded HCD in various wound models such as abrasion, excision and infection were evaluated in comparison with the commercial product. Polyisobutylene and SIS hardly affected the mechanical properties, but PHR improved the tensile strength and elongation at break. Disintegrants such as croscarmellose sodium, sodium starch glycolate and crospovidone improved the swelling ratio of the CA-loaded HCD. Furthermore, the CA-loaded HCD without croscarmellose sodium poorly released the drug, but that with 2% croscarmellose sodium showed about 27% drug release in 24h. In particular, the CA-loaded HCD composed of CA/polyisobutylene/SIS/PHR/liquid paraffin/sodium alginate/croscarmellose sodium at the weight ratio of 1/8/25/25/12/27/2 furnished excellent mechanical properties and drug release. As compared with the commercial product, it offered improved healing effects in excision, infection and abrasion type wounds in rats. Thus, this novel CA-loaded HCD could be a potential candidate for the treatment of various wounds.


International Journal of Pharmaceutics | 2015

Novel sodium fusidate-loaded film-forming hydrogel with easy application and excellent wound healing

Dong Wuk Kim; Kyung Soo Kim; Youn Gee Seo; Beom-Jin Lee; Young Joon Park; Yu Seok Youn; Jong Oh Kim; Chul Soon Yong; Sung Giu Jin; Han-Gon Choi

To develop a novel sodium fusidate-loaded film-forming hydrogel (FFH) for easy application and excellent wound healing, various FFH formulations and corresponding FFH dried films were prepared with drug, polyvinylalcohol (PVA), polyvinylpyrrolidone (PVP), propylene glycol, ethanol and water, and their film forming times, mechanical properties, drug release, in vivo wound healing in rat and histopathology were assessed. The sodium fusidate-loaded FFH composed of sodium fusidate/PVP/PVA/propylene glycol/ethanol/water at the weight ratio of 1/2/12/3/8/74 could form a corresponding dried film in the wound sites promptly due to fast film-forming time of about 4 min. This FFH showed an appropriate hardness and adhesiveness. Furthermore, this corresponding dried film provided an excellent flexibility and elasticity, and gave relatively high drug release. As compared with the sodium fusidate-loaded commercial product, it significantly improved excision and infection wound healing in rats. This FFH was stable at 45°C for at least 6 months. Therefore, this novel sodium fusidate-loaded FFH would be an effective pharmaceutical product with easy application for the treatment of wounds.


International Journal of Pharmaceutics | 2016

Effect of HM30181 mesylate salt-loaded microcapsules on the oral absorption of paclitaxel as a novel P-glycoprotein inhibitor

Jin Cheul Kim; Kyeong Soo Kim; Dong Shik Kim; Sung Giu Jin; Dong Wuk Kim; Yong Il Kim; Jae Hyun Park; Jong Oh Kim; Chul Soon Yong; Yu Seok Youn; Jong Soo Woo; Han-Gon Choi

The purpose of this study was to develop HM30181 mesylate salt (HM30181M)-loaded microcapsules as a novel P-glycoprotein inhibitor for enhancing the oral absorption of paclitaxel. The effect of various carriers including hydrophilic polymers and solvents on the solubility of HM30181M were evaluated. Among the hydrophilic polymers and solvents tested, HPMC and methylene chloride (and ethanol) provided the highest HM30181M solubility. Numerous HM30181M-loaded microcapsules were prepared with HPMC, silicon dioxide and acidifying agents using a spray-drying technique, and their solubility, dissolution and physicochemical properties were evaluated. Furthermore, a pharmacokinetic study was performed after oral administration of paclitaxel alone, simultaneously with HM30181M powder or HM30181M-loaded microcapsules to rats. Among the acidifying agents investigated, phosphoric acid provided the best improvement in the solubility and dissolution of HM30181M. Moreover, the microcapsule composed of HM30181M, HPMC, silicon dioxide and phosphoric acid at a weight ratio of 3:6:3:2 remarkably enhanced the solubility and dissolution of HM30181M compared with the HM30181M powder alone. The microcapsules were spherical in shape, had a reduced particle size of about 7μm, and contained HM30181M in an amorphous state. Furthermore, this microcapsule significantly enhanced HM30181M absorption, making it about 1.7-fold faster and 1.6-fold greater after simultaneous administration, leading to about 70- and 2-fold improved oral bioavailability of paclitaxel compared with paclitaxel alone and the simultaneous administration with HM30181M powder, respectively. Thus, this novel microcapsule could be a potential candidate for effective P-glycoprotein inhibition during oral administration of paclitaxel.


Drug Development Research | 2015

In Vivo Wound‐Healing Effects of Novel Benzalkonium Chloride‐Loaded Hydrocolloid Wound Dressing

Sung Giu Jin; Abid Mehmood Yousaf; Sun Woo Jang; Mi-Won Son; Kyung Soo Kim; Dong-Wuk Kim; Dong Xun Li; Jong Oh Kim; Chul Soon Yong; Han-Gon Choi

Preclinical Research


International Journal of Pharmaceutics | 2016

Influence of hydrophilic polymers on functional properties and wound healing efficacy of hydrocolloid based wound dressings.

Sung Giu Jin; Abid Mehmood Yousaf; Kyeong Soo Kim; Dong Wuk Kim; Dong Shik Kim; Jin-Ki Kim; Chul Soon Yong; Yu Seok Youn; Jong Oh Kim; Han-Gon Choi

The purpose of this study was to investigate the influence of different hydrophilic polymers on the swelling, bioadhesion and mechanical strength of hydrocolloid wound dressings (HCDs) in order to provide an appropriate composition for a hydrocolloid wound dressing system. In this study, the HCDs were prepared with styrene-isoprene-styrene copolymer (SIS) and polyisobutylene (PIB) as the base using a hot melting method. Additionally, numerous SIS/PIB-based HCDs were prepared with six hydrophilic polymers, and their wound dressing properties were assessed. Finally, the wound healing efficacy of the selected formulations was compared to a commercial wound dressing. The swelling ratio, bioadhesive force and mechanical strengths of HCDs were increased in the order of sodium alginate>sodium CMC=poloxamer=HPMC>PVA=PVP, sodium alginate>sodium CMC=poloxamer>PVA>HPMC=PVP and sodium alginate≥PVA>PVP=HPMC=sodium CMC>poloxamer, respectively. Among the hydrophilic polymers tested, sodium alginate most enhanced the swelling capacity, bioadhesive force and mechanical strengths. Thus, the hydrophilic polymers played great role in the swelling, bioadhesion and mechanical strength of SIS/PIB-based HCDs. The HCD formulation composed of PIB, SIS, liquid paraffin and sodium alginate at the weight ratio of 20/25/12/43 gave better wound dressing properties and more excellent wound healing efficacy than the commercial wound dressing. Therefore, the novel HCD formulation could be a promising hydrocolloid system for wound dressings.

Collaboration


Dive into the Sung Giu Jin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yu Seok Youn

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge