Dong-Sic Choi
Pohang University of Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dong-Sic Choi.
BMC Genomics | 2009
Bok Sil Hong; Ji-Hoon Cho; Hyun-Jung Kim; Eun-Jeong Choi; Sangchul Rho; Jongmin Kim; Ji Hyun Kim; Dong-Sic Choi; Yoon-Keun Kim; Daehee Hwang; Yong Song Gho
BackgroundVarious cancer cells, including those of colorectal cancer (CRC), release microvesicles (exosomes) into surrounding tissues and peripheral circulation. These microvesicles can mediate communication between cells and affect various tumor-related processes in their target cells.ResultsWe present potential roles of CRC cell-derived microvesicles in tumor progression via a global comparative microvesicular and cellular transcriptomic analysis of human SW480 CRC cells. We first identified 11,327 microvesicular mRNAs involved in tumorigenesis-related processes that reflect the physiology of donor CRC cells. We then found 241 mRNAs enriched in the microvesicles above donor cell levels, of which 27 were involved in cell cycle-related processes. Network analysis revealed that most of the cell cycle-related microvesicle-enriched mRNAs were associated with M-phase activities. The integration of two mRNA datasets showed that these M-phase-related mRNAs were differentially regulated across CRC patients, suggesting their potential roles in tumor progression. Finally, we experimentally verified the network-driven hypothesis by showing a significant increase in proliferation of endothelial cells treated with the microvesicles.ConclusionOur study demonstrates that CRC cell-derived microvesicles are enriched in cell cycle-related mRNAs that promote proliferation of endothelial cells, suggesting that microvesicles of cancer cells can be involved in tumor growth and metastasis by facilitating angiogenesis-related processes. This information will help elucidate the pathophysiological functions of tumor-derived microvesicles, and aid in the development of cancer diagnostics, including colorectal cancer.
Proteomics | 2013
Dong-Sic Choi; Dae-Kyum Kim; Yoon-Keun Kim; Yong Song Gho
Mammalian cells secrete two types of extracellular vesicles either constitutively or in a regulated manner: exosomes (50–100 nm in diameter) released from the intracellular compartment and ectosomes (also called microvesicles, 100–1000 nm in diameter) shed directly from the plasma membrane. Extracellular vesicles are bilayered proteolipids enriched with proteins, mRNAs, microRNAs, and lipids. In recent years, much data have been collected regarding the specific components of extracellular vesicles from various cell types and body fluids using proteomic, transcriptomic, and lipidomic methods. These studies have revealed that extracellular vesicles harbor specific types of proteins, mRNAs, miRNAs, and lipids rather than random cellular components. These results provide valuable information on the molecular mechanisms involved in vesicular cargo‐sorting and biogenesis. Furthermore, studies of these complex extracellular organelles have facilitated conceptual advancements in the field of intercellular communication under physiological and pathological conditions as well as for disease‐specific biomarker discovery. This review focuses on the proteomic, transcriptomic, and lipidomic profiles of extracellular vesicles, and will briefly summarize recent advances in the biology, function, and diagnostic potential of vesicle‐specific components.
Mass Spectrometry Reviews | 2008
Eun-Young Lee; Dong-Sic Choi; Kwang Pyo Kim; Yong Song Gho
Gram-negative bacteria constitutively secrete outer membrane vesicles (OMVs) into the extracellular milieu. Recent research in this area has revealed that OMVs may act as intercellular communicasomes in polyspecies communities by enhancing bacterial survival and pathogenesis in hosts. However, the mechanisms of vesicle formation and the pathophysiological roles of OMVs have not been clearly defined. While it is obvious that mass spectrometry-based proteomics offers great opportunities for improving our knowledge of bacterial OMVs, limited proteomic data are available for OMVs. The present review aims to give an overview of the previous biochemical, biological, and proteomic studies in the emerging field of bacterial OMVs, and to give future directions for high-throughput and comparative proteomic studies of OMVs that originate from diverse Gram-negative bacteria under various environmental conditions. This article will hopefully stimulate further efforts to construct a comprehensive proteome database of bacterial OMVs that will help us not only to elucidate the biogenesis and functions of OMVs but also to develop diagnostic tools, vaccines, and antibiotics effective against pathogenic bacteria.
ACS Nano | 2013
Su Chul Jang; Oh Youn Kim; Chang Min Yoon; Dong-Sic Choi; Tae-Young Roh; Jaesung Park; Jonas Nilsson; Jan Lötvall; Yoon-Keun Kim; Yong Song Gho
Exosomes, the endogenous nanocarriers that can deliver biological information between cells, were recently introduced as new kind of drug delivery system. However, mammalian cells release relatively low quantities of exosomes, and purification of exosomes is difficult. Here, we developed bioinspired exosome-mimetic nanovesicles that deliver chemotherapeutics to the tumor tissue after systemic administration. The chemotherapeutics-loaded nanovesicles were produced by the breakdown of monocytes or macrophages using a serial extrusion through filters with diminishing pore sizes (10, 5, and 1 μm). These cell-derived nanovesicles have similar characteristics with the exosomes but have 100-fold higher production yield. Furthermore, the nanovesicles have natural targeting ability of cells by maintaining the topology of plasma membrane proteins. In vitro, chemotherapeutic drug-loaded nanovesicles induced TNF-α-stimulated endothelial cell death in a dose-dependent manner. In vivo, experiments in mice showed that the chemotherapeutic drug-loaded nanovesicles traffic to tumor tissue and reduce tumor growth without the adverse effects observed with equipotent free drug. Furthermore, compared with doxorubicin-loaded exosomes, doxorubicin-loaded nanovesicles showed similar in vivo antitumor activity. However, doxorubicin-loaded liposomes that did not carry targeting proteins were inefficient in reducing tumor growth. Importantly, removal of the plasma membrane proteins by trypsinization eliminated the therapeutic effects of the nanovesicles both in vitro and in vivo. Taken together, these studies suggest that the bioengineered nanovesicles can serve as novel exosome-mimetics to effectively deliver chemotherapeutics to treat malignant tumors.
Journal of extracellular vesicles | 2013
Dae-Kyum Kim; Byeongsoo Kang; Oh Youn Kim; Dong-Sic Choi; Jaewook Lee; Sae Rom Kim; Gyeongyun Go; Yae Jin Yoon; Ji Hyun Kim; Su Chul Jang; Kyong-Su Park; Eun-Jeong Choi; Kwang Pyo Kim; Dominic M. Desiderio; Yoon-Keun Kim; Jan Lötvall; Daehee Hwang; Yong Song Gho
Secretion of extracellular vesicles is a general cellular activity that spans the range from simple unicellular organisms (e.g. archaea; Gram-positive and Gram-negative bacteria) to complex multicellular ones, suggesting that this extracellular vesicle-mediated communication is evolutionarily conserved. Extracellular vesicles are spherical bilayered proteolipids with a mean diameter of 20–1,000 nm, which are known to contain various bioactive molecules including proteins, lipids, and nucleic acids. Here, we present EVpedia, which is an integrated database of high-throughput datasets from prokaryotic and eukaryotic extracellular vesicles. EVpedia provides high-throughput datasets of vesicular components (proteins, mRNAs, miRNAs, and lipids) present on prokaryotic, non-mammalian eukaryotic, and mammalian extracellular vesicles. In addition, EVpedia also provides an array of tools, such as the search and browse of vesicular components, Gene Ontology enrichment analysis, network analysis of vesicular proteins and mRNAs, and a comparison of vesicular datasets by ortholog identification. Moreover, publications on extracellular vesicle studies are listed in the database. This free web-based database of EVpedia (http://evpedia.info) might serve as a fundamental repository to stimulate the advancement of extracellular vesicle studies and to elucidate the novel functions of these complex extracellular organelles.
Proteomics | 2011
Dong-Sic Choi; Dae-Kyum Kim; Seng Jin Choi; Jaewook Lee; Jun-Pyo Choi; Sangchul Rho; Sang-Hyun Park; Yoon-Keun Kim; Daehee Hwang; Yong Song Gho
Pseudomonas aeruginosa, an opportunistic human bacterial pathogen, constitutively secretes outer membrane vesicles (OMVs) into the extracellular milieu. Although recent progress has revealed that OMVs are essential for pathogenesis of P. aeruginosa, their proteins have not been comprehensively analyzed so far. In this study, we identified 338 vesicular proteins with high confidence by five separate LC‐MS/MS analyses. This global proteome profile provides a basis for future studies to elucidate the pathological functions of OMVs from P. aeruginosa.
Proteomics | 2011
Dong-Sic Choi; Jung Ok Park; Su Chul Jang; Yae Jin Yoon; Jin Woo Jung; Do-Young Choi; Jung-Wook Kim; Ji Seon Kang; Jaesung Park; Daehee Hwang; Kyunghee Lee; Sang-Hyun Park; Yoon-Keun Kim; Dominic M. Desiderio; Kwang Pyo Kim; Yong Song Gho
The presence of malignant ascites in the peritoneal cavity is a poor prognostic indicator of low survival rate. Various cancer cells, including those of colorectal cancer (CRC), release microvesicles (exosomes) into surrounding tissues and peripheral circulation including malignant ascites. Although recent progress has revealed that microvesicles play multiple roles in tumor progression, the protein composition and the pathological function of malignant ascites‐derived microvesicles are still unknown. Here, we report the first global proteomic analyses of highly purified microvesicles derived from human CRC ascites. With 1‐D SDS‐PAGE and nano‐LC‐MS/MS analyses, we identified a total of 846 microvesicular proteins from ascites of three CRC patients with high confidence; 384 proteins were identified in at least two patients. We identified proteins that might function in tumor progression via disruption of epithelial polarity, migration, invasion, tumor growth, immune modulation, and angiogenesis. Furthermore, we identified several potential diagnostic markers of CRC including colon‐specific surface antigens. Our proteomic analyses will help to elucidate diverse functions of microvesicles in cancer progression and will aid in the development of novel diagnostic tools for CRC.
Journal of extracellular vesicles | 2012
Dong-Sic Choi; Do-Young Choi; Bok Sil Hong; Su Chul Jang; Dae-Kyum Kim; Jaewook Lee; Yoon-Keun Kim; Kwang Pyo Kim; Yong Song Gho
Cancer cells actively release extracellular vesicles (EVs), including exosomes and microvesicles, into surrounding tissues. These EVs play pleiotropic roles in cancer progression and metastasis, including invasion, angiogenesis, and immune modulation. However, the proteomic differences between primary and metastatic cancer cell-derived EVs remain unclear. Here, we conducted comparative proteomic analysis between EVs derived from human primary colorectal cancer cells (SW480) and their metastatic derivatives (SW620). Using label-free quantitation, we identified 803 and 787 proteins in SW480 EVs and SW620 EVs, respectively. Based on comparison between the estimated abundance of EV proteins, we identified 368 SW480 EV-enriched and 359 SW620 EV-enriched proteins. SW480 EV-enriched proteins played a role in cell adhesion, but SW620 EV-enriched proteins were associated with cancer progression and functioned as diagnostic indicators of metastatic cancer; they were overexpressed in metastatic colorectal cancer and played roles in multidrug resistance. As the first proteomic analysis comparing primary and metastatic cancer-derived EVs, this study increases our understanding of the pathological function of EVs in the metastatic process and provides useful biomarkers for cancer metastasis. To access the supplementary material to this article: Tables S1–S4, please see Supplementary files under Article Tools online.
Proteomics | 2013
Jung Ok Park; Do-Young Choi; Dong-Sic Choi; Hee Joung Kim; Jeong Won Kang; Jae Hun Jung; Jeong Hwa Lee; Jayoung Kim; Michael R. Freeman; Kye Young Lee; Yong Song Gho; Kwang Pyo Kim
Microvesicles (MVs, also known as exosomes, ectosomes, microparticles) are released by various cancer cells, including lung, colorectal, and prostate carcinoma cells. MVs released from tumor cells and other sources accumulate in the circulation and in pleural effusion. Although recent studies have shown that MVs play multiple roles in tumor progression, the potential pathological roles of MV in pleural effusion, and their protein composition, are still unknown. In this study, we report the first global proteomic analysis of highly purified MVs derived from human nonsmall cell lung cancer (NSCLC) pleural effusion. Using nano‐LC–MS/MS following 1D SDS‐PAGE separation, we identified a total of 912 MV proteins with high confidence. Three independent experiments on three patients showed that MV proteins from PE were distinct from MV obtained from other malignancies. Bioinformatics analyses of the MS data identified pathologically relevant proteins and potential diagnostic makers for NSCLC, including lung‐enriched surface antigens and proteins related to epidermal growth factor receptor signaling. These findings provide new insight into the diverse functions of MVs in cancer progression and will aid in the development of novel diagnostic tools for NSCLC.
Journal of Proteome Research | 2012
Dong-Sic Choi; Jae-Seong Yang; Eun-Jeong Choi; Su Chul Jang; Solip Park; Oh Youn Kim; Daehee Hwang; Kwang Pyo Kim; Yoon-Keun Kim; Sanguk Kim; Yong Song Gho
Various mammalian cells including tumor cells secrete extracellular vesicles (EVs), otherwise known as exosomes and microvesicles. EVs are nanosized bilayered proteolipids and play multiple roles in intercellular communication. Although many vesicular proteins have been identified, their functional interrelationships and the mechanisms of EV biogenesis remain unknown. By interrogating proteomic data using systems approaches, we have created a protein interaction network of human colorectal cancer cell-derived EVs which comprises 1491 interactions between 957 vesicular proteins. We discovered that EVs have well-connected clusters with several hub proteins similar to other subcellular networks. We also experimentally validated that direct protein interactions between cellular proteins may be involved in protein sorting during EV formation. Moreover, physically and functionally interconnected protein complexes form functional modules involved in EV biogenesis and functions. Specifically, we discovered that SRC signaling plays a major role in EV biogenesis, and confirmed that inhibition of SRC kinase decreased the intracellular biogenesis and cell surface release of EVs. Our study provides global insights into the cargo-sorting, biogenesis, and pathophysiological roles of these complex extracellular organelles.