Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Oh Youn Kim is active.

Publication


Featured researches published by Oh Youn Kim.


ACS Nano | 2013

Bioinspired Exosome-Mimetic Nanovesicles for Targeted Delivery of Chemotherapeutics to Malignant Tumors

Su Chul Jang; Oh Youn Kim; Chang Min Yoon; Dong-Sic Choi; Tae-Young Roh; Jaesung Park; Jonas Nilsson; Jan Lötvall; Yoon-Keun Kim; Yong Song Gho

Exosomes, the endogenous nanocarriers that can deliver biological information between cells, were recently introduced as new kind of drug delivery system. However, mammalian cells release relatively low quantities of exosomes, and purification of exosomes is difficult. Here, we developed bioinspired exosome-mimetic nanovesicles that deliver chemotherapeutics to the tumor tissue after systemic administration. The chemotherapeutics-loaded nanovesicles were produced by the breakdown of monocytes or macrophages using a serial extrusion through filters with diminishing pore sizes (10, 5, and 1 μm). These cell-derived nanovesicles have similar characteristics with the exosomes but have 100-fold higher production yield. Furthermore, the nanovesicles have natural targeting ability of cells by maintaining the topology of plasma membrane proteins. In vitro, chemotherapeutic drug-loaded nanovesicles induced TNF-α-stimulated endothelial cell death in a dose-dependent manner. In vivo, experiments in mice showed that the chemotherapeutic drug-loaded nanovesicles traffic to tumor tissue and reduce tumor growth without the adverse effects observed with equipotent free drug. Furthermore, compared with doxorubicin-loaded exosomes, doxorubicin-loaded nanovesicles showed similar in vivo antitumor activity. However, doxorubicin-loaded liposomes that did not carry targeting proteins were inefficient in reducing tumor growth. Importantly, removal of the plasma membrane proteins by trypsinization eliminated the therapeutic effects of the nanovesicles both in vitro and in vivo. Taken together, these studies suggest that the bioengineered nanovesicles can serve as novel exosome-mimetics to effectively deliver chemotherapeutics to treat malignant tumors.


Journal of extracellular vesicles | 2013

EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles

Dae-Kyum Kim; Byeongsoo Kang; Oh Youn Kim; Dong-Sic Choi; Jaewook Lee; Sae Rom Kim; Gyeongyun Go; Yae Jin Yoon; Ji Hyun Kim; Su Chul Jang; Kyong-Su Park; Eun-Jeong Choi; Kwang Pyo Kim; Dominic M. Desiderio; Yoon-Keun Kim; Jan Lötvall; Daehee Hwang; Yong Song Gho

Secretion of extracellular vesicles is a general cellular activity that spans the range from simple unicellular organisms (e.g. archaea; Gram-positive and Gram-negative bacteria) to complex multicellular ones, suggesting that this extracellular vesicle-mediated communication is evolutionarily conserved. Extracellular vesicles are spherical bilayered proteolipids with a mean diameter of 20–1,000 nm, which are known to contain various bioactive molecules including proteins, lipids, and nucleic acids. Here, we present EVpedia, which is an integrated database of high-throughput datasets from prokaryotic and eukaryotic extracellular vesicles. EVpedia provides high-throughput datasets of vesicular components (proteins, mRNAs, miRNAs, and lipids) present on prokaryotic, non-mammalian eukaryotic, and mammalian extracellular vesicles. In addition, EVpedia also provides an array of tools, such as the search and browse of vesicular components, Gene Ontology enrichment analysis, network analysis of vesicular proteins and mRNAs, and a comparison of vesicular datasets by ortholog identification. Moreover, publications on extracellular vesicle studies are listed in the database. This free web-based database of EVpedia (http://evpedia.info) might serve as a fundamental repository to stimulate the advancement of extracellular vesicle studies and to elucidate the novel functions of these complex extracellular organelles.


Bioinformatics | 2015

EVpedia: a community web portal for extracellular vesicles research

Dae-Kyum Kim; Jaewook Lee; Sae Rom Kim; Dong Sic Choi; Yae Jin Yoon; Ji Hyun Kim; Gyeongyun Go; Dinh Nhung; Kahye Hong; Su Chul Jang; Si-Hyun Kim; Kyong-Su Park; Oh Youn Kim; Hyun Taek Park; Jihye Seo; Elena Aikawa; Monika Baj-Krzyworzeka; Bas W. M. van Balkom; Mattias Belting; Lionel Blanc; Vincent C. Bond; Antonella Bongiovanni; Francesc E. Borràs; Luc Buée; Edit I. Buzás; Lesley Cheng; Aled Clayton; Emanuele Cocucci; Charles S. Dela Cruz; Dominic M. Desiderio

MOTIVATION Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS We present an improved version of EVpedia, a public database for EVs research. This community web portal contains a database of publications and vesicular components, identification of orthologous vesicular components, bioinformatic tools and a personalized function. EVpedia includes 6879 publications, 172 080 vesicular components from 263 high-throughput datasets, and has been accessed more than 65 000 times from more than 750 cities. In addition, about 350 members from 73 international research groups have participated in developing EVpedia. This free web-based database might serve as a useful resource to stimulate the emerging field of EV research. AVAILABILITY AND IMPLEMENTATION The web site was implemented in PHP, Java, MySQL and Apache, and is freely available at http://evpedia.info.


PLOS ONE | 2010

Outer Membrane Vesicles Derived from Escherichia coli Induce Systemic Inflammatory Response Syndrome

Kyong-Su Park; Kyoung Ho Choi; You-Sun Kim; Bok Sil Hong; Oh Youn Kim; Ji Hyun Kim; Chang Min Yoon; Gou Young Koh; Yoon-Keun Kim; Yong Song Gho

Sepsis, characterized by a systemic inflammatory state that is usually related to Gram-negative bacterial infection, is a leading cause of death worldwide. Although the annual incidence of sepsis is still rising, the exact cause of Gram-negative bacteria-associated sepsis is not clear. Outer membrane vesicles (OMVs), constitutively secreted from Gram-negative bacteria, are nano-sized spherical bilayered proteolipids. Using a mouse model, we showed that intraperitoneal injection of OMVs derived from intestinal Escherichia coli induced lethality. Furthermore, OMVs induced host responses which resemble a clinically relevant condition like sepsis that was characterized by piloerection, eye exudates, hypothermia, tachypnea, leukopenia, disseminated intravascular coagulation, dysfunction of the lungs, hypotension, and systemic induction of tumor necrosis factor-α and interleukin-6. Our study revealed a previously unidentified causative microbial signal in the pathogenesis of sepsis, suggesting OMVs as a new therapeutic target to prevent and/or treat severe sepsis caused by Gram-negative bacterial infection.


Journal of Biochemistry and Molecular Biology | 2014

Extracellular vesicles as emerging intercellular communicasomes.

Yae Jin Yoon; Oh Youn Kim; Yong Song Gho

All living cells release extracellular vesicles having pleiotropic functions in intercellular communication. Mammalian extracellular vesicles, also known as exosomes and microvesicles, are spherical bilayered proteolipids composed of various bioactive molecules, including RNAs, DNAs, proteins, and lipids. Extracellular vesicles directly and indirectly control a diverse range of biological processes by transferring membrane proteins, signaling molecules, mRNAs, and miRNAs, and activating receptors of recipient cells. The active interaction of extracellular vesicles with other cells regulates various physiological and pathological conditions, including cancer, infectious diseases, and neurodegenerative disorders. Recent developments in high-throughput proteomics, transcriptomics, and lipidomics tools have provided ample data on the common and specific components of various types of extracellular vesicles. These studies may contribute to the understanding of the molecular mechanism involved in vesicular cargo sorting and the biogenesis of extracellular vesicles, and, further, to the identification of disease-specific biomarkers. This review focuses on the components, functions, and therapeutic and diagnostic potential of extracellular vesicles under various pathophysiological conditions. [BMB Reports 2014; 47(10): 531-539]


Journal of Immunology | 2013

Immunization with Escherichia coli Outer Membrane Vesicles Protects Bacteria-Induced Lethality via Th1 and Th17 Cell Responses

Oh Youn Kim; Bok Sil Hong; Kyong-Su Park; Yae Jin Yoon; Seng Jin Choi; Won Hee Lee; Tae-Young Roh; Jan Lötvall; Yoon-Keun Kim; Yong Song Gho

Outer membrane vesicles (OMVs), secreted from Gram-negative bacteria, are spherical nanometer-sized proteolipids enriched with outer membrane proteins. OMVs, also known as extracellular vesicles, have gained interests for use as nonliving complex vaccines and have been examined for immune-stimulating effects. However, the detailed mechanism on how OMVs elicit the vaccination effect has not been studied extensively. In this study, we investigated the immunological mechanism governing the protective immune response of OMV vaccines. Immunization with Escherichia coli–derived OMVs prevented bacteria-induced lethality and OMV-induced systemic inflammatory response syndrome. As verified by adoptive transfer and gene-knockout studies, the protective effect of OMV immunization was found to be primarily by the stimulation of T cell immunity rather than B cell immunity, especially by the OMV-Ag–specific production of IFN-γ and IL-17 from T cells. By testing the bacteria-killing ability of macrophages, we also demonstrated that IFN-γ and IL-17 production is the main factor promoting bacterial clearances. Our findings reveal that E. coli–derived OMV immunization effectively protects bacteria-induced lethality and OMV-induced systemic inflammatory response syndrome primarily via Th1 and Th17 cell responses. This study therefore provides a new perspective on the immunological detail regarding OMV vaccination.


Journal of Proteome Research | 2012

The Protein Interaction Network of Extracellular Vesicles Derived from Human Colorectal Cancer Cells

Dong-Sic Choi; Jae-Seong Yang; Eun-Jeong Choi; Su Chul Jang; Solip Park; Oh Youn Kim; Daehee Hwang; Kwang Pyo Kim; Yoon-Keun Kim; Sanguk Kim; Yong Song Gho

Various mammalian cells including tumor cells secrete extracellular vesicles (EVs), otherwise known as exosomes and microvesicles. EVs are nanosized bilayered proteolipids and play multiple roles in intercellular communication. Although many vesicular proteins have been identified, their functional interrelationships and the mechanisms of EV biogenesis remain unknown. By interrogating proteomic data using systems approaches, we have created a protein interaction network of human colorectal cancer cell-derived EVs which comprises 1491 interactions between 957 vesicular proteins. We discovered that EVs have well-connected clusters with several hub proteins similar to other subcellular networks. We also experimentally validated that direct protein interactions between cellular proteins may be involved in protein sorting during EV formation. Moreover, physically and functionally interconnected protein complexes form functional modules involved in EV biogenesis and functions. Specifically, we discovered that SRC signaling plays a major role in EV biogenesis, and confirmed that inhibition of SRC kinase decreased the intracellular biogenesis and cell surface release of EVs. Our study provides global insights into the cargo-sorting, biogenesis, and pathophysiological roles of these complex extracellular organelles.


Small | 2015

In vivo kinetic biodistribution of nano-sized outer membrane vesicles derived from bacteria.

Su Chul Jang; Sae Rom Kim; Yae Jin Yoon; Kyong-Su Park; Ji Hyun Kim; Jaewook Lee; Oh Youn Kim; Eun-Jeong Choi; Dae-Kyum Kim; Dong-Sic Choi; Yoon-Keun Kim; Jaesung Park; Dolores Di Vizio; Yong Song Gho

Evaluation of kinetic distribution and behaviors of nanoparticles in vivo provides crucial clues into their roles in living organisms. Extracellular vesicles are evolutionary conserved nanoparticles, known to play important biological functions in intercellular, inter-species, and inter-kingdom communication. In this study, the first kinetic analysis of the biodistribution of outer membrane vesicles (OMVs)-bacterial extracellular vesicles-with immune-modulatory functions is performed. OMVs, injected intraperitoneally, spread to the whole mouse body and accumulate in the liver, lung, spleen, and kidney within 3 h of administration. As an early systemic inflammation response, increased levels of TNF-α and IL-6 are observed in serum and bronchoalveolar lavage fluid. In addition, the number of leukocytes and platelets in the blood is decreased. OMVs and cytokine concentrations, as well as body temperature are gradually decreased 6 h after OMV injection, in concomitance with the formation of eye exudates, and of an increase in ICAM-1 levels in the lung. Following OMV elimination, most of the inflammatory signs are reverted, 12 h post-injection. However, leukocytes in bronchoalveolar lavage fluid are increased as a late reaction. Taken together, these results suggest that OMVs are effective mediators of long distance communication in vivo.


Proteomics Clinical Applications | 2016

Proteomic profiling of Gram-negative bacterial outer membrane vesicles: Current perspectives.

Jaewook Lee; Oh Youn Kim; Yong Song Gho

Outer membrane vesicles (OMVs) are extracellular vesicles derived from Gram‐negative bacteria. Recent progress in the studies of Gram‐negative bacterial extracellular vesicles implies that OMVs may function as intercellular communicasomes in bacteria–bacteria and bacteria–host interactions. Current MS‐based high‐throughput proteomic analyses of Gram‐negative bacterial OMVs have identified thousands of vesicular proteins and provided clues to reveal the biogenesis and pathophysiological functions of Gram‐negative bacterial OMVs. The future directions of proteomics of Gram‐negative bacterial OMVs may include the isolation strategy of Gram‐negative bacterial OMVs to thoroughly exclude nonvesicular contaminants and proteomics of Gram‐negative bacterial OMVs derived from diverse conditions as well as body fluids of bacterium‐infected hosts. We hope this review will shed light on future research in this emerging field of proteomics of extracellular vesicles derived from Gram‐negative bacteria and contribute to the development of OMV‐based diagnostic tools and effective vaccines.


PLOS ONE | 2015

Active Immunization with Extracellular Vesicles Derived from Staphylococcus aureus Effectively Protects against Staphylococcal Lung Infections, Mainly via Th1 Cell-Mediated Immunity

Seng Jin Choi; Min-Hye Kim; Jinseong Jeon; Oh Youn Kim; Youngwoo Choi; Jihye Seo; Sung-Wook Hong; Won-Hee Lee; Seong Gyu Jeon; Yong Song Gho; Young Koo Jee; Yoon-Keun Kim

Staphylococcus aureus is an important pathogenic bacterium that causes various infectious diseases. Extracellular vesicles (EVs) released from S. aureus contain bacterial proteins, nucleic acids, and lipids. These EVs can induce immune responses leading to similar symptoms as during staphylococcal infection condition and have the potential as vaccination agent. Here, we show that active immunization (vaccination) with S. aureus-derived EVs induce adaptive immunity of antibody and T cell responses. In addition, these EVs have the vaccine adjuvant ability to induce protective immunity such as the up-regulation of co-stimulatory molecules and the expression of T cell polarizing cytokines in antigen-presenting cells. Moreover, vaccination with S. aureus EVs conferred protection against lethality induced by airway challenge with lethal dose of S. aureus and also pneumonia induced by the administration of sub-lethal dose of S. aureus. These protective effects were also found in mice that were adoptively transferred with splenic T cells isolated from S. aureus EV-immunized mice, but not in serum transferred mice. Furthermore, this protective effect of S. aureus EVs was significantly reduced by the absence of interferon-gamma, but not by the absence of interleukin-17. Together, the study herein suggests that S. aureus EVs are a novel vaccine candidate against S. aureus infections, mainly via Th1 cellular response.

Collaboration


Dive into the Oh Youn Kim's collaboration.

Top Co-Authors

Avatar

Yong Song Gho

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Su Chul Jang

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyong-Su Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jaewook Lee

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yae Jin Yoon

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jaesung Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Dong-Sic Choi

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Sae Rom Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Ji Hyun Kim

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge