Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Su Chul Jang is active.

Publication


Featured researches published by Su Chul Jang.


ACS Nano | 2013

Bioinspired Exosome-Mimetic Nanovesicles for Targeted Delivery of Chemotherapeutics to Malignant Tumors

Su Chul Jang; Oh Youn Kim; Chang Min Yoon; Dong-Sic Choi; Tae-Young Roh; Jaesung Park; Jonas Nilsson; Jan Lötvall; Yoon-Keun Kim; Yong Song Gho

Exosomes, the endogenous nanocarriers that can deliver biological information between cells, were recently introduced as new kind of drug delivery system. However, mammalian cells release relatively low quantities of exosomes, and purification of exosomes is difficult. Here, we developed bioinspired exosome-mimetic nanovesicles that deliver chemotherapeutics to the tumor tissue after systemic administration. The chemotherapeutics-loaded nanovesicles were produced by the breakdown of monocytes or macrophages using a serial extrusion through filters with diminishing pore sizes (10, 5, and 1 μm). These cell-derived nanovesicles have similar characteristics with the exosomes but have 100-fold higher production yield. Furthermore, the nanovesicles have natural targeting ability of cells by maintaining the topology of plasma membrane proteins. In vitro, chemotherapeutic drug-loaded nanovesicles induced TNF-α-stimulated endothelial cell death in a dose-dependent manner. In vivo, experiments in mice showed that the chemotherapeutic drug-loaded nanovesicles traffic to tumor tissue and reduce tumor growth without the adverse effects observed with equipotent free drug. Furthermore, compared with doxorubicin-loaded exosomes, doxorubicin-loaded nanovesicles showed similar in vivo antitumor activity. However, doxorubicin-loaded liposomes that did not carry targeting proteins were inefficient in reducing tumor growth. Importantly, removal of the plasma membrane proteins by trypsinization eliminated the therapeutic effects of the nanovesicles both in vitro and in vivo. Taken together, these studies suggest that the bioengineered nanovesicles can serve as novel exosome-mimetics to effectively deliver chemotherapeutics to treat malignant tumors.


Journal of extracellular vesicles | 2013

EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles

Dae-Kyum Kim; Byeongsoo Kang; Oh Youn Kim; Dong-Sic Choi; Jaewook Lee; Sae Rom Kim; Gyeongyun Go; Yae Jin Yoon; Ji Hyun Kim; Su Chul Jang; Kyong-Su Park; Eun-Jeong Choi; Kwang Pyo Kim; Dominic M. Desiderio; Yoon-Keun Kim; Jan Lötvall; Daehee Hwang; Yong Song Gho

Secretion of extracellular vesicles is a general cellular activity that spans the range from simple unicellular organisms (e.g. archaea; Gram-positive and Gram-negative bacteria) to complex multicellular ones, suggesting that this extracellular vesicle-mediated communication is evolutionarily conserved. Extracellular vesicles are spherical bilayered proteolipids with a mean diameter of 20–1,000 nm, which are known to contain various bioactive molecules including proteins, lipids, and nucleic acids. Here, we present EVpedia, which is an integrated database of high-throughput datasets from prokaryotic and eukaryotic extracellular vesicles. EVpedia provides high-throughput datasets of vesicular components (proteins, mRNAs, miRNAs, and lipids) present on prokaryotic, non-mammalian eukaryotic, and mammalian extracellular vesicles. In addition, EVpedia also provides an array of tools, such as the search and browse of vesicular components, Gene Ontology enrichment analysis, network analysis of vesicular proteins and mRNAs, and a comparison of vesicular datasets by ortholog identification. Moreover, publications on extracellular vesicle studies are listed in the database. This free web-based database of EVpedia (http://evpedia.info) might serve as a fundamental repository to stimulate the advancement of extracellular vesicle studies and to elucidate the novel functions of these complex extracellular organelles.


Bioinformatics | 2015

EVpedia: a community web portal for extracellular vesicles research

Dae-Kyum Kim; Jaewook Lee; Sae Rom Kim; Dong Sic Choi; Yae Jin Yoon; Ji Hyun Kim; Gyeongyun Go; Dinh Nhung; Kahye Hong; Su Chul Jang; Si-Hyun Kim; Kyong-Su Park; Oh Youn Kim; Hyun Taek Park; Jihye Seo; Elena Aikawa; Monika Baj-Krzyworzeka; Bas W. M. van Balkom; Mattias Belting; Lionel Blanc; Vincent C. Bond; Antonella Bongiovanni; Francesc E. Borràs; Luc Buée; Edit I. Buzás; Lesley Cheng; Aled Clayton; Emanuele Cocucci; Charles S. Dela Cruz; Dominic M. Desiderio

MOTIVATION Extracellular vesicles (EVs) are spherical bilayered proteolipids, harboring various bioactive molecules. Due to the complexity of the vesicular nomenclatures and components, online searches for EV-related publications and vesicular components are currently challenging. RESULTS We present an improved version of EVpedia, a public database for EVs research. This community web portal contains a database of publications and vesicular components, identification of orthologous vesicular components, bioinformatic tools and a personalized function. EVpedia includes 6879 publications, 172 080 vesicular components from 263 high-throughput datasets, and has been accessed more than 65 000 times from more than 750 cities. In addition, about 350 members from 73 international research groups have participated in developing EVpedia. This free web-based database might serve as a useful resource to stimulate the emerging field of EV research. AVAILABILITY AND IMPLEMENTATION The web site was implemented in PHP, Java, MySQL and Apache, and is freely available at http://evpedia.info.


Proteomics | 2011

Proteomic analysis of microvesicles derived from human colorectal cancer ascites.

Dong-Sic Choi; Jung Ok Park; Su Chul Jang; Yae Jin Yoon; Jin Woo Jung; Do-Young Choi; Jung-Wook Kim; Ji Seon Kang; Jaesung Park; Daehee Hwang; Kyunghee Lee; Sang-Hyun Park; Yoon-Keun Kim; Dominic M. Desiderio; Kwang Pyo Kim; Yong Song Gho

The presence of malignant ascites in the peritoneal cavity is a poor prognostic indicator of low survival rate. Various cancer cells, including those of colorectal cancer (CRC), release microvesicles (exosomes) into surrounding tissues and peripheral circulation including malignant ascites. Although recent progress has revealed that microvesicles play multiple roles in tumor progression, the protein composition and the pathological function of malignant ascites‐derived microvesicles are still unknown. Here, we report the first global proteomic analyses of highly purified microvesicles derived from human CRC ascites. With 1‐D SDS‐PAGE and nano‐LC‐MS/MS analyses, we identified a total of 846 microvesicular proteins from ascites of three CRC patients with high confidence; 384 proteins were identified in at least two patients. We identified proteins that might function in tumor progression via disruption of epithelial polarity, migration, invasion, tumor growth, immune modulation, and angiogenesis. Furthermore, we identified several potential diagnostic markers of CRC including colon‐specific surface antigens. Our proteomic analyses will help to elucidate diverse functions of microvesicles in cancer progression and will aid in the development of novel diagnostic tools for CRC.


Lab on a Chip | 2012

Microfluidic filtration system to isolate extracellular vesicles from blood

Ryan Thomas Davies; Junho Kim; Su Chul Jang; Eun-Jeong Choi; Yong Song Gho; Jaesung Park

Extracellular vesicles are released by various cell types, particularly tumor cells, and may be potential targets for blood-based cancer diagnosis. However, studies performed on blood-borne vesicles to date have been limited by lack of effective, standardized purification strategies. Using in situ prepared nanoporous membranes, we present a simple strategy employing a microfluidic filtration system to isolate vesicles from whole blood samples. This method can be applied to purify nano-sized particles from blood allowing isolation of intact extracellular vesicles, avoiding the need for laborious and potentially damaging centrifugation steps or overly specific antibody-based affinity purification. Porous polymer monoliths were integrated as membranes into poly(methyl methacrylate) microfluidic chips by benchtop UV photopolymerization through a mask, allowing precise positioning of membrane elements while preserving simplicity of device preparation. Pore size could be manipulated by changing the ratio of porogenic solvent to prepolymer solution, and was tuned to a size proper for extraction of vesicles. Using the membrane as a size exclusion filter, we separated vesicles from cells and large debris by injecting whole blood under pressure through the microfluidic device. To enhance isolation purity, DC electrophoresis was employed as an alternative driving force to propel particles across the filter and increase the separation efficiency of vesicles from proteins. From the whole blood of melanoma-grown mice, we isolated extracellular vesicles and performed RT-PCR to verify their contents of RNA. Melan A mRNA derived from melanoma tumor cells were found enriched in filtered samples, confirming the recovery of vesicles via their cargo. This filtration system can be incorporated into other on-chip processes enabling integrated sample preparation for the downstream analysis of blood-based extracellular vesicles.


Journal of extracellular vesicles | 2012

Quantitative proteomics of extracellular vesicles derived from human primary and metastatic colorectal cancer cells

Dong-Sic Choi; Do-Young Choi; Bok Sil Hong; Su Chul Jang; Dae-Kyum Kim; Jaewook Lee; Yoon-Keun Kim; Kwang Pyo Kim; Yong Song Gho

Cancer cells actively release extracellular vesicles (EVs), including exosomes and microvesicles, into surrounding tissues. These EVs play pleiotropic roles in cancer progression and metastasis, including invasion, angiogenesis, and immune modulation. However, the proteomic differences between primary and metastatic cancer cell-derived EVs remain unclear. Here, we conducted comparative proteomic analysis between EVs derived from human primary colorectal cancer cells (SW480) and their metastatic derivatives (SW620). Using label-free quantitation, we identified 803 and 787 proteins in SW480 EVs and SW620 EVs, respectively. Based on comparison between the estimated abundance of EV proteins, we identified 368 SW480 EV-enriched and 359 SW620 EV-enriched proteins. SW480 EV-enriched proteins played a role in cell adhesion, but SW620 EV-enriched proteins were associated with cancer progression and functioned as diagnostic indicators of metastatic cancer; they were overexpressed in metastatic colorectal cancer and played roles in multidrug resistance. As the first proteomic analysis comparing primary and metastatic cancer-derived EVs, this study increases our understanding of the pathological function of EVs in the metastatic process and provides useful biomarkers for cancer metastasis. To access the supplementary material to this article: Tables S1–S4, please see Supplementary files under Article Tools online.


RNA Biology | 2015

Small RNA deep sequencing discriminates subsets of extracellular vesicles released by melanoma cells – Evidence of unique microRNA cargos

Taral R. Lunavat; Lesley Cheng; Dae-Kyum Kim; Joydeep Bhadury; Su Chul Jang; Cecilia Lässer; Robyn A. Sharples; Marcela Dávila López; Jonas A. Nilsson; Yong Song Gho; Andrew F. Hill; Jan Lötvall

Melanoma cells release different types of extracellular vesicles (EVs) into the extracellular milieu that are involved with communication and signaling in the tumor microenvironment. Subsets of EVs include exosomes, microvesicles, and apoptotic bodies that carry protein and genetic (RNA) cargos. To define the contribution of the RNA cargo of melanoma cell derived EVs we performed small RNA sequencing to identify different small RNAs in the EV subsets. Using validated centrifugation protocols, we separated these EV subsets released by the melanoma cell line MML-1, and performed RNA sequencing with the Ion Torrent platform. Various, but different, non-coding RNAs were detected in the EV subsets, including microRNA, mitochondrial associated tRNA, small nucleolar RNA, small nuclear RNA, Ro associated Y-RNA, vault RNA and Y-RNA. We identified in total 1041 miRNAs in cells and EV subsets. Hierarchical clustering showed enrichment of specific miRNAs in exosomes, including hsa-miR-214-3p, hsa-miR-199a-3p and hsa-miR-155-5p, all being associated with melanoma progression. Comparison of exosomal miRNAs with miRNAs in clinical melanoma samples indicate that multiple miRNAs in exosomes also are expressed specifically in melanoma tissues, but not in benign naevi. This study shows for the first time the presence of distinct small RNAs in subsets of EVs released by melanoma cells, with significant similarities to clinical melanoma tissue, and provides unique insights into the contribution of EV associated extracellular RNA in cancer.


Journal of Proteome Research | 2012

The Protein Interaction Network of Extracellular Vesicles Derived from Human Colorectal Cancer Cells

Dong-Sic Choi; Jae-Seong Yang; Eun-Jeong Choi; Su Chul Jang; Solip Park; Oh Youn Kim; Daehee Hwang; Kwang Pyo Kim; Yoon-Keun Kim; Sanguk Kim; Yong Song Gho

Various mammalian cells including tumor cells secrete extracellular vesicles (EVs), otherwise known as exosomes and microvesicles. EVs are nanosized bilayered proteolipids and play multiple roles in intercellular communication. Although many vesicular proteins have been identified, their functional interrelationships and the mechanisms of EV biogenesis remain unknown. By interrogating proteomic data using systems approaches, we have created a protein interaction network of human colorectal cancer cell-derived EVs which comprises 1491 interactions between 957 vesicular proteins. We discovered that EVs have well-connected clusters with several hub proteins similar to other subcellular networks. We also experimentally validated that direct protein interactions between cellular proteins may be involved in protein sorting during EV formation. Moreover, physically and functionally interconnected protein complexes form functional modules involved in EV biogenesis and functions. Specifically, we discovered that SRC signaling plays a major role in EV biogenesis, and confirmed that inhibition of SRC kinase decreased the intracellular biogenesis and cell surface release of EVs. Our study provides global insights into the cargo-sorting, biogenesis, and pathophysiological roles of these complex extracellular organelles.


Scientific Reports | 2015

Noninvasive imaging of radiolabeled exosome-mimetic nanovesicle using (99m)Tc-HMPAO.

Do Won Hwang; Hongyoon Choi; Su Chul Jang; Min Young Yoo; Ji Yong Park; Na Eun Choi; Hyun Jeong Oh; Seunggyun Ha; Yun-Sang Lee; Jae Min Jeong; Yong Song Gho; Dong Soo Lee

Exosomes known as nano-sized extracellular vesicles attracted recent interests due to their potential usefulness in drug delivery. Amid remarkable advances in biomedical applications of exosomes, it is crucial to understand in vivo distribution and behavior of exosomes. Here, we developed a simple method for radiolabeling of macrophage-derived exosome-mimetic nanovesicles (ENVs) with 99mTc-HMPAO under physiologic conditions and monitored in vivo distribution of 99mTc-HMPAO-ENVs using SPECT/CT in living mice. ENVs were produced from the mouse RAW264.7 macrophage cell line and labeled with 99mTc-HMPAO for 1 hr incubation, followed by removal of free 99mTc-HMPAO. SPECT/CT images were serially acquired after intravenous injection to BALB/c mouse. When ENVs were labeled with 99mTc-HMPAO, the radiochemical purity of 99mTc-HMPAO-ENVs was higher than 90% and the expression of exosome specific protein (CD63) did not change in 99mTc-HMPAO-ENVs. 99mTc-HMPAO-ENVs showed high serum stability (90%) which was similar to that in phosphate buffered saline until 5 hr. SPECT/CT images of the mice injected with 99mTc-HMPAO-ENVs exhibited higher uptake in liver and no uptake in brain, whereas mice injected with 99mTc-HMPAO showed high brain uptake until 5 hr. Our noninvasive imaging of radiolabeled-ENVs promises better understanding of the in vivo behavior of exosomes for upcoming biomedical application.


Small | 2015

In vivo kinetic biodistribution of nano-sized outer membrane vesicles derived from bacteria.

Su Chul Jang; Sae Rom Kim; Yae Jin Yoon; Kyong-Su Park; Ji Hyun Kim; Jaewook Lee; Oh Youn Kim; Eun-Jeong Choi; Dae-Kyum Kim; Dong-Sic Choi; Yoon-Keun Kim; Jaesung Park; Dolores Di Vizio; Yong Song Gho

Evaluation of kinetic distribution and behaviors of nanoparticles in vivo provides crucial clues into their roles in living organisms. Extracellular vesicles are evolutionary conserved nanoparticles, known to play important biological functions in intercellular, inter-species, and inter-kingdom communication. In this study, the first kinetic analysis of the biodistribution of outer membrane vesicles (OMVs)-bacterial extracellular vesicles-with immune-modulatory functions is performed. OMVs, injected intraperitoneally, spread to the whole mouse body and accumulate in the liver, lung, spleen, and kidney within 3 h of administration. As an early systemic inflammation response, increased levels of TNF-α and IL-6 are observed in serum and bronchoalveolar lavage fluid. In addition, the number of leukocytes and platelets in the blood is decreased. OMVs and cytokine concentrations, as well as body temperature are gradually decreased 6 h after OMV injection, in concomitance with the formation of eye exudates, and of an increase in ICAM-1 levels in the lung. Following OMV elimination, most of the inflammatory signs are reverted, 12 h post-injection. However, leukocytes in bronchoalveolar lavage fluid are increased as a late reaction. Taken together, these results suggest that OMVs are effective mediators of long distance communication in vivo.

Collaboration


Dive into the Su Chul Jang's collaboration.

Top Co-Authors

Avatar

Yong Song Gho

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jan Lötvall

University of Gothenburg

View shared research outputs
Top Co-Authors

Avatar

Oh Youn Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dong-Sic Choi

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dae-Kyum Kim

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Jaesung Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Kyong-Su Park

Pohang University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Yae Jin Yoon

Pohang University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge