Hyun Jin Chun
Gyeongsang National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hyun Jin Chun.
Biochimica et Biophysica Acta | 1998
Ja Choon Koo; So Young Lee; Hyun Jin Chun; Yong Hwa Cheong; Jae Su Choi; Shun Ichiro Kawabata; Masaru Miyagi; Susumu Tsunasawa; Kwon-Soo Ha; Dong Won Bae; Chang Deok Han; Bok Luel Lee; Moo Je Cho
Two antifungal peptides (Pn-AMP1 and Pn-AMP2) have been purified to homogeneity from seeds of Pharbitis nil. The amino acid sequences of Pn-AMP1 (41 amino acid0 residues) and Pn-AMP2 (40 amino acid residues) were identical except that Pn-AMP1 has an additional serine residue at the carboxyl-terminus. The molecular masses of Pn-AMP1 and Pn-AMP2 were confirmed as 4299.7 and 4213.2 Da, respectively. Both the Pn-AMPs were highly basic (pI 12.02) and had characteristics of cysteine/glycine rich chitin-binding domain. Pn-AMPs exhibited potent antifungal activity against both chitin-containing and non-chitin-containing fungi in the cell wall. Concentrations required for 50% inhibition of fungal growth were ranged from 3 to 26 micrograms/ml for Pn-AMP1 and from 0.6 to 75 micrograms/ml for Pn-AMP2. The Pn-AMPs penetrated very rapidly into fungal hyphae and localized at septum and hyphal tips of fungi, which caused burst of hyphal tips. Burst of hyphae resulted in disruption of the fungal membrane and leakage of the cytoplasmic materials. To our knowledge, Pn-AMPs are the first hevein-like proteins that show similar fungicidal effects as thionins do.
Plant Molecular Biology | 2002
Hyeong Cheol Park; Yun Hwan Kang; Hyun Jin Chun; Ja Choon Koo; Yong Hwa Cheong; Cha Young Kim; Min Chul Kim; Woo Sik Chung; Jong Cheol Kim; Jae Hyuk Yoo; Yoon Duck Koo; Sung Chul Koo; Chae Oh Lim; Sang Yeol Lee; Moo Je Cho
We isolated a stamen-specific cDNA, BSD1 (Brassica stamen specific plant defensin 1) that encodes a novel plant defensin peptide in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Plant defensins are antimicrobial peptides containing eight highly conserved cysteine residues linked by disulfide bridges. In BSD1, the eight cysteine residues and a glutamate residue at position 29 are conserved whereas other amino acid residues of the plant defensins consensus sequence are substituted. BSD1 transcripts accumulate specifically in the stamen of developing flowers and its level drops as the flowers mature. The recombinant BSD1 produced in Escherichia coli showed antifungal activity against several phytopathogenic fungi. Furthermore, constitutive over-expression of the BSD1 gene under the control of the cauliflower mosaic virus (CaMV) 35S promoter conferred enhanced tolerance against the Phytophthora parasitica in the transgenic tobacco plants.
Molecular Plant | 2013
Jeong Im Kim; Dongwon Baek; Hyeong Cheol Park; Hyun Jin Chun; Dong-Ha Oh; Min Kyung Lee; Joon-Yung Cha; Woe-Yeon Kim; Min Chul Kim; Woo Sik Chung; Hans J. Bohnert; Sang Yeol Lee; Ray A. Bressan; Shin-Woo Lee; Dae-Jin Yun
Indole-3-acetic acid (IAA), a major plant auxin, is produced in both tryptophan-dependent and tryptophan-independent pathways. A major pathway in Arabidopsis thaliana generates IAA in two reactions from tryptophan. Step one converts tryptophan to indole-3-pyruvic acid (IPA) by tryptophan aminotransferases followed by a rate-limiting step converting IPA to IAA catalyzed by YUCCA proteins. We identified eight putative StYUC (Solanum tuberosum YUCCA) genes whose deduced amino acid sequences share 50%-70% identity with those of Arabidopsis YUCCA proteins. All include canonical, conserved YUCCA sequences: FATGY motif, FMO signature sequence, and FAD-binding and NADP-binding sequences. In addition, five genes were found with ~50% amino acid sequence identity to Arabidopsis tryptophan aminotransferases. Transgenic potato (Solanum tuberosum cv. Jowon) constitutively overexpressing Arabidopsis AtYUC6 displayed high-auxin phenotypes such as narrow downward-curled leaves, increased height, erect stature, and longevity. Transgenic potato plants overexpressing AtYUC6 showed enhanced drought tolerance based on reduced water loss. The phenotype was correlated with reduced levels of reactive oxygen species in leaves. The results suggest a functional YUCCA pathway of auxin biosynthesis in potato that may be exploited to alter plant responses to the environment.
Plant Journal | 2010
Sung C. Koo; Oliver Bracko; Mi S. Park; Rebecca Schwab; Hyun Jin Chun; Kyoung Mi Park; Jun S. Seo; Vojislava Grbic; Sureshkumar Balasubramanian; Markus Schmid; François Godard; Dae-Jin Yun; Sang Y. Lee; Moo J. Cho; Detlef Weigel; Min C. Kim
MADS-domain transcription factors play pivotal roles in various developmental processes. The lack of simple loss-of-function phenotypes provides impediments to understand the biological function of some of the MADS-box transcription factors. Here we have characterized the potential role of the Arabidopsis thaliana AGAMOUS-LIKE6 (AGL6) gene by fusing full-length coding sequence with transcriptional activator and repressor domains and suggest a role for AGL6 in lateral organ development and flowering. Upon photoperiodic induction of flowering, AGL6 becomes expressed in abaxial and proximal regions of cauline leaf primordia, as well as the cryptic bracts subtending flowers. In developing flowers, AGL6 is detected in the proximal regions of all floral organs and in developing ovules. Converting AGL6 into a strong activator through fusion to the VP16 domain triggers bract outgrowth, implicating AGL6 in the development of bractless flowers in Arabidopsis. In addition, ectopic reproductive structures form on both bracts and flowers in gAGL6::VP16 transgenic plants, which is dependent on B and C class homeotic genes, but independent of LEAFY. Overexpression of both AGL6 and its transcriptional repressor form, AGL6::EAR, causes precocious flowering and terminal flower formation, suggesting that AGL6 suppresses the function of a floral repressor.
Plant Physiology | 2013
Dongwon Baek; Min Chul Kim; Hyun Jin Chun; S.G. Kang; Hyeong Cheol Park; Gilok Shin; Ji-Young Park; Mingzhe Shen; Hyewon Hong; Woe-Yeon Kim; Doh Hoon Kim; Sang Yeol Lee; Ray A. Bressan; Hans J. Bohnert; Dae-Jin Yun
Although a role for microRNA399 (miR399) in plant responses to phosphate (Pi) starvation has been indicated, the regulatory mechanism underlying miR399 gene expression is not clear. Here, we report that AtMYB2 functions as a direct transcriptional activator for miR399 in Arabidopsis (Arabidopsis thaliana) Pi starvation signaling. Compared with untransformed control plants, transgenic plants constitutively overexpressing AtMYB2 showed increased miR399f expression and tissue Pi contents under high Pi growth and exhibited elevated expression of a subset of Pi starvation-induced genes. Pi starvation-induced root architectural changes were more exaggerated in AtMYB2-overexpressing transgenic plants compared with the wild type. AtMYB2 directly binds to a MYB-binding site in the miR399f promoter in vitro, as well as in vivo, and stimulates miR399f promoter activity in Arabidopsis protoplasts. Transcription of AtMYB2 itself is induced in response to Pi deficiency, and the tissue expression patterns of miR399f and AtMYB2 are similar. Both genes are expressed mainly in vascular tissues of cotyledons and in roots. Our results suggest that AtMYB2 regulates plant responses to Pi starvation by regulating the expression of the miR399 gene.
Molecules and Cells | 2012
Hyun Jin Chun; Hyeong Cheol Park; Sung Cheol Koo; Ju Huck Lee; Chan Young Park; Man Soo Choi; Chang Ho Kang; Dongwon Baek; Yong Hwa Cheong; Dae-Jin Yun; Woo Sik Chung; Moo Je Cho; Min Chul Kim
Nitric oxide (NO) is known for its role in the activation of plant defense responses. To examine the involvement and mode of action of NO in plant defense responses, we introduced calmodulin-dependent mammalian neuronal nitric oxide synthase (nNOS), which controls the CaMV35S promoter, into wild-type and NahG tobacco plants. Constitutive expression of nNOS led to NO production and triggered spontaneous induction of leaf lesions. Transgenic plants accumulated high amounts of H2O2, with catalase activity lower than that in the wild type. nNOS transgenic plants contained high levels of salicylic acid (SA), and they induced an array of SA-, jasmonic acid (JA)-, and/or ethylene (ET)-related genes. Consequently, NahG co-expression blocked the induction of systemic acquired resistance (SAR)-associated genes in transgenic plants, implying SA is involved in NO-mediated induction of SAR genes. The transgenic plants exhibited enhanced resistance to a spectrum of pathogens, including bacteria, fungi, and viruses. Our results suggest a highly ranked regulatory role for NO in SA-, JA-, and/or ET-dependent pathways that lead to disease resistance.
Phytochemistry | 2003
Ok Sun Lee; Boyoung Lee; Nammi Park; Ja Choon Koo; Young Hoe Kim; Theertha Prasad D; Chandrakant Karigar; Hyun Jin Chun; Byoung Ryong Jeong; Doh Hoon Kim; Jaesung Nam; Jae-Gil Yun; Sang-Soo Kwak; Moo Je Cho; Dae-Jin Yun
The antifungal activity of hevein-like proteins has been associated with their chitin-binding activities. Pn-AMP1 and Pn-AMP2, two hevein homologues from Pharbitis nil, show in vitro antifungal activities against both chitin and non-chitin containing fungi. Purified Pn-AMPs retained antifungal activities only under non-reducing conditions. When Pn-AMP2 cDNA was constitutively expressed in tomato (Lycopersicon esculentum) plants under the control of CaMV35S promoter, the transgenic plants showed enhanced resistance against both the non-chitinous fungus Phytophthora capsici, and the chitin-containing fungus Fusarium oxysporum. Thus, the chitin component in the fungal cell wall is not an absolute requirement for Pn-AMPs antifungal activities. These results when considered together suggest that Pn-AMPs have the potential for developing transgenic plants resistant to a wide range of phytopathogenic fungi.
Molecules and Cells | 2009
Sung Cheol Koo; Man Soo Choi; Hyun Jin Chun; Dong Bum Shin; Bong Soo Park; Yul Ho Kim; Hyang Mi Park; Hak Soo Seo; Jong Tae Song; Kyu Young Kang; Dae-Jin Yun; Woo Sik Chung; Moo Je Cho; Min Chul Kim
We previously isolated the OsCBT gene, which encodes a calmodulin (CaM)-binding protein, from a rice expression library constructed from fungal elicitor-treated rice suspension cells. In order to understand the function of OsCBT in rice, we isolated and characterized a T-DNA insertion mutant allele named oscbt-1. The oscbt-1 mutant exhibits reduced levels of OsCBT transcripts and no significant morphological changes compared to wild-type plant although the growth of the mutant is stunted. However, oscbt-1 mutants showed significant resistance to two major rice pathogens. The growth of the rice blast fungus Magnaporthe grisea, as well as the bacterial pathogen Xanthomonas oryzae pv. oryzae was significantly suppressed in oscbt-1 plants. Histochemical analysis indicated that the hypersensitive-response was induced in the oscbt-1 mutant in response to compatible strains of fungal pathogens. OsCBT expression was induced upon challenge with fungal elicitor. We also observed significant increase in the level of pathogenesis-related genes in the oscbt-1 mutant even under pathogen-free condition. Taken together, the results support an idea that OsCBT might act as a negative regulator on plant defense.
Molecules and Cells | 2009
Sung Cheol Koo; Man Soo Choi; Hyun Jin Chun; Hyeong Cheol Park; Chang Ho Kang; Sang In Shim; Jong Il Chung; Yong Hwa Cheong; Sang Yeol Lee; Dae-Jin Yun; Woo Sik Chung; Moo Je Cho; Min Chul Kim
Our previous study suggested that OsBWMK1, a gene which encodes a member of the rice MAP kinase family, generates transcript variants which show distinct expression patterns in response to environmental stresses. The transcript variants are generated by alternative splicing and by use of alternative promoters. To test whether the two alternative promoters, pOsBWMK1L (promoter for the OsBWMK1L splice variant) and pOsBWMK1S (promoter for the OsBWMK1S splice variant), are biologically functional, we analyzed transgenic plants expressing GUS fusion constructs for each promoter. Both pOsBWMK1L and pOsBWMK1S are biologically active, although the activity of pOsBWMK1S is lower than that of pOsBWMK1L. Histochemical analysis revealed that pOsBWMK1L is constitutively active in most tissues at various developmental stages in rice and Arabidopsis, whereas pOsBWMK1S activity is spatially and temporally restricted. Furthermore, the expression of pOsBWMK1S::GUS was upregulated in response to hydrogen peroxide, a plant defense signaling molecule, in both plant species. These results suggest that the differential expression of OsBWMK1 splice variants is the result of alternative promoter usage and, moreover, that the mechanisms controlling OsBWMK1 gene expression are conserved in both monocot and dicot plants.
Plant Cell Tissue and Organ Culture | 1999
Sung-Ho Lee; Young Goel Shon; Cha Young Kim; Hyun Jin Chun; Yong Hwa Cheong; Zhoo Hyeon Kim; Zhin Ryong Choe; Young Ju Choi; Moo Je Cho
Rice protoplasts were cultured using 4 different culture procedures such as agarose embedding (AE) without feeder cells and the use of filter membranes (MEM), one layer of nylon mesh (MS1), or a double layer of nylon mesh (MS2) with the inclusion of Lolium multiflorum as feeder cells. The protoplast plating efficiency was highest on the MEM, followed by MS2, MS1 and AE. However, plant regeneration frequencies were highest for MS1, followed by MS2, MEM and AE. The protoclonal plants differed in the morphology of leaves, flowers, spikelets, and panicles in comparison to seed-derived plants. They varied in almost every phenotypic characters evaluated. In many cases, the variation was significantly different in characteristics such as plant height, flag leaf length and width and ratio, and in panicle characteristics such as panicle length, number of primary branches, and number of spikelets per panicle. The number of seeds per panicle was greatly reduced in protoclonal plants when compared with seed-derived control plants. The seeds showed also significant differences in grain length and width in comparison to the control plants. Among the 4 groups of protoclonal plants derived from the 4 different culturing procedures themselves, there were also variations in almost all the phenotypic characteristics assessed.