Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Doug W. Chan is active.

Publication


Featured researches published by Doug W. Chan.


The EMBO Journal | 2003

Purification and functional characterization of the human N-CoR complex: the roles of HDAC3, TBL1 and TBLR1

Ho-Geun Yoon; Doug W. Chan; Zhi-Qing Huang; Jiwen Li; Joseph D. Fondell; Jun Qin; Jiemin Wong

Corepressors N‐CoR and SMRT participate in diverse repression pathways and exist in large protein complexes including HDAC3, TBL1 and TBLR1. However, the roles of these proteins in SMRT–N‐CoR complex function are largely unknown. Here we report the purification and functional characterization of the human N‐CoR complex. The purified N‐CoR complex contains 10–12 associated proteins, including previously identified components and a novel actin‐binding protein IR10. We show that TBL1/TBLR1 associates with N‐CoR through two independent interactions: the N‐terminal region and the C‐terminal WD‐40 repeats interact with the N‐CoR RD1 and RD4 region, respectively. In vitro, TBL1/TBLR1 bind histones H2B and H4, and, importantly, repression by TBL1/TBLR1 correlates with their interaction with histones. By using specific small interference RNAs (siRNAs), we demonstrate that HDAC3 is essential, whereas TBL1 and TBLR1 are functionally redundant but essential for repression by unliganded thyroid hormone receptor. Together, our data reveal the roles of HDAC3 and TBL/TBLR1 and provide evidence for the functional importance of histone interaction in repression mediated by SMRT–N‐CoR complexes.


Nature Cell Biology | 2004

PTOP interacts with POT1 and regulates its localization to telomeres.

Dan Liu; Amin Safari; Matthew S. O'Connor; Doug W. Chan; Andrew Laegeler; Jun Qin; Zhou Songyang

Telomere maintenance has been implicated in cancer and ageing, and requires cooperation between a multitude of telomeric factors, including telomerase, TRF1, TRF2, RAP1, TIN2, Tankyrase, PINX1 and POT1 (refs 1–12). POT1 belongs to a family of oligonucleotide-binding (OB)-fold-containing proteins that include Oxytricha nova TEBP, Cdc13, and spPot1, which specifically recognize telomeric single-stranded DNA (ssDNA). In human cells, the loading of POT1 to telomeric ssDNA controls telomerase-mediated telomere elongation. Surprisingly, a human POT1 mutant lacking an OB fold is still recruited to telomeres. However, the exact mechanism by which this recruitment occurs remains unclear. Here we identify a novel telomere protein, PTOP, which interacts with both POT1 and TIN2. PTOP binds to the carboxyl terminus of POT1 and recruits it to telomeres. Inhibition of PTOP by RNA interference (RNAi) or disruption of the PTOP–POT1 interaction hindered the localization of POT1 to telomeres. Furthermore, expression of the respective interaction domains on PTOP and POT1 alone extended telomere length in human cells. Therefore, PTOP heterodimerizes with POT1 and regulates POT1 telomeric recruitment and telomere length.


Cell | 2011

Analysis of the Human Endogenous Coregulator Complexome

Anna Malovannaya; Rainer B. Lanz; Sung Yun Jung; Yaroslava Bulynko; Nguyen T. Le; Doug W. Chan; Yi Shi; Nur Yucer; Giedre Krenciute; Beom Jun Kim; Chunshu Li; Rui Chen; Wei Li; Yi Wang; Bert W. O'Malley; Jun Qin

Elucidation of endogenous cellular protein-protein interactions and their networks is most desirable for biological studies. Here we report our study of endogenous human coregulator protein complex networks obtained from integrative mass spectrometry-based analysis of 3290 affinity purifications. By preserving weak protein interactions during complex isolation and utilizing high levels of reciprocity in the large dataset, we identified many unreported protein associations, such as a transcriptional network formed by ZMYND8, ZNF687, and ZNF592. Furthermore, our work revealed a tiered interplay within networks that share common proteins, providing a conceptual organization of a cellular proteome composed of minimal endogenous modules (MEMOs), complex isoforms (uniCOREs), and regulatory complex-complex interaction networks (CCIs). This resource will effectively fill a void in linking correlative genomic studies with an understanding of transcriptional regulatory protein functions within the proteome for formulation and testing of future hypotheses.


Journal of Biological Chemistry | 2005

Cell cycle dependence of DNA-dependent protein kinase phosphorylation in response to DNA double strand breaks

Benjamin P C Chen; Doug W. Chan; Junya Kobayashi; Sandeep Burma; Aroumougame Asaithamby; Keiko Morotomi-Yano; Elliot Botvinick; Jun Qin; David J. Chen

DNA-dependent protein kinase (DNA-PK), consisting of Ku and DNA-PKcs subunits, is the key component of the non-homologous end-joining (NHEJ) pathway of DNA double strand break (DSB) repair. Although the kinase activity of DNA-PKcs is essential for NHEJ, thus far, no in vivo substrate has been conclusively identified except for an autophosphorylation site on DNA-PKcs itself (threonine 2609). Here we report the ionizing radiation (IR)-induced autophosphorylation of DNA-PKcs at a novel site, serine 2056, the phosphorylation of which is required for the repair of DSBs by NHEJ. Interestingly, IR-induced DNA-PKcs autophosphorylation is regulated in a cell cycle-dependent manner with attenuated phosphorylation in the S phase. In contrast, DNA replication-associated DSBs resulted in DNA-PKcs autophosphorylation and localization to DNA damage sites. These results indicate that although IR-induced DNA-PKcs phosphorylation is attenuated in the S phase, DNA-PKcs is preferentially activated by the physiologically relevant DNA replication-associated DSBs at the sites of DNA synthesis.


Molecular and Cellular Biology | 2004

A new XRCC1-containing complex and its role in cellular survival of methyl methanesulfonate treatment.

Hao Luo; Doug W. Chan; Tao Yang; Maria Rodriguez; Benjamin Ping Chi Chen; Mei Leng; Jung Jung Mu; David J. Chen; Zhou Songyang; Yi Wang; Jun Qin

ABSTRACT DNA single-strand break repair (SSBR) is important for maintaining genome stability and homeostasis. The current SSBR model derived from an in vitro-reconstituted reaction suggests that the SSBR complex mediated by X-ray repair cross-complementing protein 1 (XRCC1) is assembled sequentially at the site of damage. In this study, we provide biochemical data to demonstrate that two preformed XRCC1 protein complexes exist in cycling HeLa cells. One complex contains known enzymes that are important for SSBR, including DNA ligase 3 (DNL3), polynucleotide kinase 3′-phosphatase, and polymerase β; the other is a new complex that contains DNL3 and the ataxia with oculomotor apraxia type 1 (AOA) gene product aprataxin. We report the characterization of the new XRCC1 complex. XRCC1 is phosphorylated in vivo and in vitro by CK2, and CK2 phosphorylation of XRCC1 on S518, T519, and T523 largely determines aprataxin binding to XRCC1 though its FHA domain. An acute loss of aprataxin by small interfering RNA renders HeLa cells sensitive to methyl methanesulfonate treatment by a mechanism of shortened half-life of XRCC1. Thus, aprataxin plays a role to maintain the steady-state protein level of XRCC1. Collectively, these data provide insights into the SSBR molecular machinery in the cell and point to the involvement of aprataxin in SSBR, thus linking SSBR to the neurological disease AOA.


Molecular & Cellular Proteomics | 2011

A Data Set of Human Endogenous Protein Ubiquitination Sites

Yi Shi; Doug W. Chan; Sung Yun Jung; Anna Malovannaya; Yi Wang; Jun Qin

Lysine ubiquitination is an important and versatile protein post-translational modification. Numerous cellular functions are regulated by ubiquitination, suggesting that extensive numbers of proteins, if not all, are modified with ubiquitin at certain times. However, proteome-wide profiling of ubiquitination sites in the mammalian system is technically challenging. We report the design and characterization of an engineered protein affinity reagent for the isolation of ubiquitinated proteins and the identification of ubiquitination sites with mass spectrometry. This recombinant protein consists of four tandem repeats of ubiquitin-associated domain from UBQLN1 fused to a GST tag. We used this GST-qUBA reagent to isolate polyubiquitinated proteins and identified 294 endogenous ubiquitination sites on 223 proteins from human 293T cells without proteasome inhibitors or overexpression of ubiquitin. Mitochondrial proteins constitute 14.7% of this data set, implicating ubiquitination in a wide range of mitochondrial functions.


Proteomics | 2009

Unbiased proteomic screen for binding proteins to modified lysines on histone H3

Doug W. Chan; Yi Wang; Meng Wu; Jiemin Wong; Jun Qin; Yingming Zhao

We report a sensitive peptide pull‐down approach in combination with protein identification by LC‐MS/MS and qualitative abundance measurements by spectrum counting to identify proteins binding to histone H3 tail containing dimethyl lysine 4 (H3K4me2), dimethyl lysine 9 (H3K9me2), or acetyl lysine 9 (H3K9ac). Our study identified 86 nuclear proteins that associate with the histone H3 tail peptides examined, including seven known direct binders and 16 putative direct binders with conserved PHD finger, bromodomain, and WD40 domains. The reliability of our proteomic screen is supported by the fact that more than one‐third of the proteins identified were previously described to associate with histone H3 tail directly or indirectly. To our knowledge, the results presented here are the most comprehensive analysis of H3K4me2, H3K9me2, and H3K9ac associated proteins and will provide a useful resource for researchers studying the mechanisms of histone code effector proteins.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Proteome-wide profiling of activated transcription factors with a concatenated tandem array of transcription factor response elements.

Doug W. Chan; Wanlin Liu; Mingwei Liu; Dong Li; Lei Song; Chonghua Li; Jianping Jin; Anna Malovannaya; Sung Yun Jung; Bei Zhen; Yi Wang; Jun Qin

Transcription factors (TFs) are families of proteins that bind to specific DNA sequences, or TF response elements (TFREs), and function as regulators of many cellular processes. Because of the low abundance of TFs, direct quantitative measurement of TFs on a proteome scale remains a challenge. In this study, we report the development of an affinity reagent that permits identification of endogenous TFs at the proteome scale. The affinity reagent is composed of a synthetic DNA containing a concatenated tandem array of the consensus TFREs (catTFRE) for the majority of TF families. By using catTFRE to enrich TFs from cells, we were able to identify as many as 400 TFs from a single cell line and a total of 878 TFs from 11 cell types, covering more than 50% of the gene products that code for the DNA-binding TFs in the genome. We further demonstrated that catTFRE pull-downs could quantitatively measure proteome-wide changes in DNA binding activity of TFs in response to exogenous stimulation by using a label-free MS-based quantification approach. Applying catTFRE on the evaluation of drug effects, we described a panoramic view of TF activations and provided candidates for the elucidation of molecular mechanisms of drug actions. We anticipate that the catTFRE affinity strategy will find widespread applications in biomedical research.


Molecular Pharmacology | 2015

The Dual Estrogen Receptor α Inhibitory Effects of the Tissue-Selective Estrogen Complex for Endometrial and Breast Safety

Sang Jun Han; Khurshida Begum; Charles E. Foulds; Ross A. Hamilton; Suzanna Bailey; Anna Malovannaya; Doug W. Chan; Jun Qin; Bert W. O'Malley

The conjugated estrogen/bazedoxifene tissue-selective estrogen complex (TSEC) is designed to minimize the undesirable effects of estrogen in the uterus and breast tissues and to allow the beneficial effects of estrogen in other estrogen-target tissues, such as the bone and brain. However, the molecular mechanism underlying endometrial and breast safety during TSEC use is not fully understood. Estrogen receptor α (ERα)–estrogen response element (ERE)–DNA pull-down assays using HeLa nuclear extracts followed by mass spectrometry–immunoblotting analyses revealed that, upon TSEC treatment, ERα interacted with transcriptional repressors rather than coactivators. Therefore, the TSEC-mediated recruitment of transcriptional repressors suppresses ERα-mediated transcription in the breast and uterus. In addition, TSEC treatment also degraded ERα protein in uterine tissue and breast cancer cells, but not in bone cells. Interestingly, ERα-ERE-DNA pull-down assays also revealed that, upon TSEC treatment, ERα interacted with the F-box protein 45 (FBXO45) E3 ubiquitin ligase. The loss-of- and gain-of-FBXO45 function analyses indicated that FBXO45 is involved in TSEC-mediated degradation of the ERα protein in endometrial and breast cells. In preclinical studies, these synergistic effects of TSEC on ERα inhibition also suppressed the estrogen-dependent progression of endometriosis. Therefore, the endometrial and breast safety effects of TSEC are associated with synergy between the selective recruitment of transcriptional repressors to ERα and FBXO45-mediated degradation of the ERα protein.


Nature Medicine | 2018

Combinatorial inhibition of PTPN12-regulated receptors leads to a broadly effective therapeutic strategy in triple-negative breast cancer

Amritha Nair; Hsiang Ching Chung; Tingting Sun; Siddhartha Tyagi; Lacey E. Dobrolecki; Rocio Dominguez-Vidana; Sarah J. Kurley; Mayra Orellana; Alexander Renwick; David M. Henke; Panagiotis Katsonis; Earlene M. Schmitt; Doug W. Chan; Hui Li; Sufeng Mao; Ivana Petrovic; Chad J. Creighton; Carolina Gutierrez; Julien Dubrulle; Fabio Stossi; Jeffrey W. Tyner; Olivier Lichtarge; Charles Y. Lin; Bing Zhang; Kenneth L. Scott; Susan G. Hilsenbeck; Jin-Peng Sun; Xiao Yu; C. Kent Osborne; Rachel Schiff

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer diagnosed in more than 200,000 women each year and is recalcitrant to targeted therapies. Although TNBCs harbor multiple hyperactive receptor tyrosine kinases (RTKs), RTK inhibitors have been largely ineffective in TNBC patients thus far. We developed a broadly effective therapeutic strategy for TNBC that is based on combined inhibition of receptors that share the negative regulator PTPN12. Previously, we and others identified the tyrosine phosphatase PTPN12 as a tumor suppressor that is frequently inactivated in TNBC. PTPN12 restrains several RTKs, suggesting that PTPN12 deficiency leads to aberrant activation of multiple RTKs and a co-dependency on these receptors. This in turn leads to the therapeutic hypothesis that PTPN12-deficient TNBCs may be responsive to combined RTK inhibition. However, the repertoire of RTKs that are restrained by PTPN12 in human cells has not been systematically explored. By methodically identifying the suite of RTK substrates (MET, PDGFRβ, EGFR, and others) inhibited by PTPN12, we rationalized a combination RTK-inhibitor therapy that induced potent tumor regression across heterogeneous models of TNBC. Orthogonal approaches revealed that PTPN12 was recruited to and inhibited these receptors after ligand stimulation, thereby serving as a feedback mechanism to limit receptor signaling. Cancer-associated mutation of PTPN12 or reduced PTPN12 protein levels diminished this feedback mechanism, leading to aberrant activity of these receptors. Restoring PTPN12 protein levels restrained signaling from RTKs, including PDGFRβ and MET, and impaired TNBC survival. In contrast with single agents, combined inhibitors targeting the PDGFRβ and MET receptors induced the apoptosis in TNBC cells in vitro and in vivo. This therapeutic strategy resulted in tumor regressions in chemo-refractory patient-derived TNBC models. Notably, response correlated with PTPN12 deficiency, suggesting that impaired receptor feedback may establish a combined addiction to these proto-oncogenic receptors. Taken together, our data provide a rationale for combining RTK inhibitors in TNBC and other malignancies that lack receptor-activating mutations.

Collaboration


Dive into the Doug W. Chan's collaboration.

Top Co-Authors

Avatar

Jun Qin

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar

David J. Chen

University of Texas Southwestern Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anna Malovannaya

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jonathan T. Lei

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Purba Singh

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sung Yun Jung

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Anna Rogers

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Chanpheng Phommaly

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Ethan Tobias

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge