Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Purba Singh is active.

Publication


Featured researches published by Purba Singh.


Nature Communications | 2017

Proteogenomic integration reveals therapeutic targets in breast cancer xenografts.

Kuan-lin Huang; Shunqiang Li; Philipp Mertins; Song Cao; Harsha P. Gunawardena; Kelly V. Ruggles; D. R. Mani; Karl R. Clauser; Maki Tanioka; Jerry Usary; Shyam M. Kavuri; Ling Xie; Christopher Yoon; Jana W. Qiao; John A. Wrobel; Matthew A. Wyczalkowski; Petra Erdmann-Gilmore; Jacqueline Snider; Jeremy Hoog; Purba Singh; Beifang Niu; Zhanfang Guo; Sam Q. Sun; Souzan Sanati; Emily Kawaler; Xuya Wang; Adam Scott; Kai Ye; Michael D. McLellan; Michael C. Wendl

Recent advances in mass spectrometry (MS) have enabled extensive analysis of cancer proteomes. Here, we employed quantitative proteomics to profile protein expression across 24 breast cancer patient-derived xenograft (PDX) models. Integrated proteogenomic analysis shows positive correlation between expression measurements from transcriptomic and proteomic analyses; further, gene expression-based intrinsic subtypes are largely re-capitulated using non-stromal protein markers. Proteogenomic analysis also validates a number of predicted genomic targets in multiple receptor tyrosine kinases. However, several protein/phosphoprotein events such as overexpression of AKT proteins and ARAF, BRAF, HSP90AB1 phosphosites are not readily explainable by genomic analysis, suggesting that druggable translational and/or post-translational regulatory events may be uniquely diagnosed by MS. Drug treatment experiments targeting HER2 and components of the PI3K pathway supported proteogenomic response predictions in seven xenograft models. Our study demonstrates that MS-based proteomics can identify therapeutic targets and highlights the potential of PDX drug response evaluation to annotate MS-based pathway activities.


Cancer Discovery | 2017

Loss of MutL Disrupts CHK2-Dependent Cell-Cycle Control through CDK4/6 to Promote Intrinsic Endocrine Therapy Resistance in Primary Breast Cancer

Svasti Haricharan; Nindo Punturi; Purba Singh; Kimberly R. Holloway; Meenakshi Anurag; Jacob Schmelz; Cheryl Schmidt; Jonathan T. Lei; Vera J. Suman; Kelly K. Hunt; John A. Olson; Jeremy Hoog; Shunqiang Li; Shixia Huang; Dean P. Edwards; Shyam M. Kavuri; Matthew N. Bainbridge; Cynthia X. Ma; Matthew J. Ellis

Significant endocrine therapy-resistant tumor proliferation is present in ≥20% of estrogen receptor-positive (ER+) primary breast cancers and is associated with disease recurrence and death. Here, we uncover a link between intrinsic endocrine therapy resistance and dysregulation of the MutL mismatch repair (MMR) complex (MLH1/3, PMS1/2), and demonstrate a direct role for MutL complex loss in resistance to all classes of endocrine therapy. We find that MutL deficiency in ER+ breast cancer abrogates CHK2-mediated inhibition of CDK4, a prerequisite for endocrine therapy responsiveness. Consequently, CDK4/6 inhibitors (CDK4/6i) remain effective in MutL-defective ER+ breast cancer cells. These observations are supported by data from a clinical trial where a CDK4/6i was found to strongly inhibit aromatase inhibitor-resistant proliferation of MutL-defective tumors. These data suggest that diagnostic markers of MutL deficiency could be used to direct adjuvant CDK4/6i to a population of patients with breast cancer who exhibit marked resistance to the current standard of care.Significance: MutL deficiency in a subset of ER+ primary tumors explains why CDK4/6 inhibition is effective against some de novo endocrine therapy-resistant tumors. Therefore, markers of MutL dysregulation could guide CDK4/6 inhibitor use in the adjuvant setting, where the risk benefit ratio for untargeted therapeutic intervention is narrow. Cancer Discov; 7(10); 1168-83. ©2017 AACR.This article is highlighted in the In This Issue feature, p. 1047.


Cell Reports | 2018

Functional Annotation of ESR1 Gene Fusions in Estrogen Receptor-Positive Breast Cancer.

Jonathan T. Lei; Jieya Shao; Jin Zhang; Michael Iglesia; Doug W. Chan; Jin Cao; Meenakshi Anurag; Purba Singh; Xiaping He; Yoshimasa Kosaka; Ryoichi Matsunuma; Robert Crowder; Jeremy Hoog; Chanpheng Phommaly; Rodrigo Franco Gonçalves; Susana Ramalho; Raquel Mary Rodrigues Peres; Nindo Punturi; Cheryl Schmidt; Alex Bartram; Eric Jou; Vaishnavi Devarakonda; Kimberly R. Holloway; W. Victoria Lai; Oliver A. Hampton; Anna Rogers; Ethan Tobias; P Parikh; Sherri R. Davies; Shunqiang Li

SUMMARY RNA sequencing (RNA-seq) detects estrogen receptor alpha gene (ESR1) fusion transcripts in estrogen receptor-positive (ER+) breast cancer, but their role in disease pathogenesis remains unclear. We examined multiple ESR1 fusions and found that two, both identified in advanced endocrine treatment-resistant disease, encoded stable and functional fusion proteins. In both examples, ESR1-e6>YAP1 and ESR1-e6>PCDH11X, ESR1 exons 1–6 were fused in frame to C-terminal sequences from the partner gene. Functional properties include estrogen-independent growth, constitutive expression of ER target genes, and anti-estrogen resistance. Both fusions activate a metastasis-associated transcriptional program, induce cellular motility, and promote the development of lung metastasis. ESR1-e6>YAP1- and ESR1-e6>PCDH11X-induced growth remained sensitive to a CDK4/6 inhibitor, and a patient-derived xenograft (PDX) naturally expressing the ESR1-e6>YAP1 fusion was also responsive. Transcriptionally active ESR1 fusions therefore trigger both endocrine therapy resistance and metastatic progression, explaining the association with fatal disease progression, although CDK4/6 inhibitor treatment is predicted to be effective.


Cancer Research | 2018

Abstract 1814: NF1 as an estrogen receptor-α co-repressor in breast cancer

Eric C. Chang; Ze-Yi Zheng; Meenakshi Anurag; Jin Gao; Burcu Cakar; Xinhui Du; Jing Li; Philip Lavere; Jonathan T. Lei; Purba Singh; Sinem Seker; Wei Song; Jianheng Peng; Tiffany Nguyen; Doug W. Chan; Chen Xi; Kimberly C. Banks; Richarad B. Lanman; Maryam Nemati Shafaee; Susan G. Hilsenbeck; Charles E. Foulds; Matthew J. Ellis

NF1 has been best known as a GAP (GTPase Activating Protein) that inactivates Ras. However, we are now finding evidence that it also functions as an ER co-repressor, whose loss leads to endocrine therapy resistance. Sequencing tumor DNA from >600 ER+ breast cancers treated by tamoxifen adjuvant monotherapy, we found that frameshift (FS) and nonsense (NS) NF1 mutations, which can create an NF1-null state, strongly correlate with relapse risk (HR=2.6, submitted). Surprisingly, no recurrent missense NF1 mutations inactivating GAP activity were found in our cohort, and such mutations are rare in primary cancers in general. We thus posulated that complete loss of NF1 protein (e.g., caused by NS/FS mutations), but not GAP inactivation alone, is required to drive endocrine therapy resistance. Here we demonstrate that NF1 loss (by gene silencing) in ER+ breast cancer cells greatly enhances ligand-dependent ER transcriptional activity in vitro and in vivo, causing estradiol (E2) hypersensitivity and tamoxifen agonism. Mechanistically we show that NF1 can bind directly to ER, an interaction enhanced by tamoxifen but not by E2. Binding is mediated by leucine/isoleucine-rich motifs in NF1, analogous to other ER co-repressors. Mutations in these motifs (some of which are targeted by somatic mutation in cancer) inhibit ER binding and transcriptional activity without impacting GAP activity; conversely, inactivating GAP activity does not impact ER binding and repression. To validate NF1 as an ER co-repressor, we examined proteomic data from >100 breast cancer patients in the CPTAC data base and found that proteins whose levels are positively correlated with NF1 are highly enriched with factors known to bind nuclear receptors; by contrast, levels of another GAP, p120, which lacks ER binding sites, are negatively correlated with these molecules. Importantly, preclinical treatment studies indicate that while NF1-deficient ER+ breast cancer should not be treated by tamoxifen or aromatase inhibitors, fulvestrant, which degrades ER, remains effective. However, fulvestrant monotherapy can activate the Ras-MAP pathway, which may promote cell survival and acquired fulvestrant resistance unless combined with dabrafinib and trametinib to inhibit Raf and MEK —a clinical trial for this combination is in development. Our data suggest that NF1 is a dual negative regulator at the intersection of two potent oncogenic signaling pathways, Ras and ER. Combination therapy targeting both the ER and the Ras-Raf pathways should be investigated for NF1-deficient cancers driven by ER. Citation Format: Eric C. Chang, zeyi Zheng, Meenakshi Anurag, Jin Gao, Burcu Cakar, Xinhui Du, Jing Li, Philip Lavere, Jonathan T. Lei, Purba Singh, Sinem Seker, Wei Song, Jianheng Peng, Tiffany Nguyen, Doug Chan, Xi Chen, Kimberly C. Banks, Richarad B. Lanman, Maryam Shafaee, Susan Hilsenbeck, Charles Foulds, Matthew J. Ellis. NF1 as an estrogen receptor-α co-repressor in breast cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 1814.


Nature Communications | 2017

Corrigendum: Proteogenomic integration reveals therapeutic targets in breast cancer xenografts.

Kuan-lin Huang; Shunqiang Li; Philipp Mertins; Song Cao; Harsha P. Gunawardena; Kelly V. Ruggles; D. R. Mani; Karl R. Clauser; Maki Tanioka; Jerry Usary; Shyam M. Kavuri; Ling Xie; Christopher Yoon; Jana W. Qiao; John A. Wrobel; Matthew A. Wyczalkowski; Petra Erdmann-Gilmore; Jacqueline Snider; Jeremy Hoog; Purba Singh; Beifang Niu; Zhanfang Guo; Sam Q. Sun; Souzan Sanati; Emily Kawaler; Xuya Wang; Adam Scott; Kai Ye; Michael D. McLellan; Michael C. Wendl

Nature Communications 8: Article number: 14864 (2017)); Published: 28 March 2017; Updated: 25 April 2017 The original version of this Article contained a typographical error in the spelling of the author Beifang Niu, which was incorrectly given as Beifung Niu. This has now been corrected in both thePDF and HTML versions of the Article.


Cancer Research | 2017

Abstract 489: Mismatch repair defects and endocrine therapy resistance in estrogen receptor positive breast cancer

Svasti Haricharan; Jacob Schmelz; Cheryl Schmidt; Purba Singh; Kimberly R. Holloway; Meenakshi Anurag; Shunqiang Li; Shyam M. Kavuri; Shixia Huang; Dean P. Edwards; Vera J. Suman; Kelly K. Hunt; John A. Olson; Jeremy Hoog; Cynthia X. Ma; Matthew N. Bainbridge; Matthew J. Ellis

Estrogen receptor positive (ER+) breast cancer is treated with endocrine therapy but intrinsic resistance occurs in ~1/3 of patients and acquired resistance in ~1/5 of the remainder. While many resistance mechanisms have been explored, therapeutic strategies to overcome resistance in the clinical setting have seen mixed outcomes, and appear most effective in the acquired resistance setting. Understanding mechanisms of resistance and finding therapeutic strategies to target them, therefore, remain important challenges facing breast cancer researchers. In this study we systematically examine the role of DNA damage repair defects in inducing endocrine therapy resistance, a relatively understudied question of recent interest. We use in silico analysis of clinical datasets, in vitro experiments evaluating endocrine therapy resistance in response to DDR dysregulation in multiple breast cancer celllines, and in vivo validation using cellline xenograft and patient-derived xenograft models. We also use gene expression microarrays and RPPA data from cell lines, patient-derived xenografts and primary ER+ breast tumors to uncover therapeutic options that are validated in vitro and in vivo and corroborated by clinical trial data. The results of this study uncover an intriguing link between mismatch repair (MMR) deficiency, specifically of the MutL complex (MLH1/3, PMS1/2), and poor prognosis in ER+ disease. We find a direct role for MutL loss in endocrine therapy resistance in vitro and in vivo by knocking down multiple MutL genes using CRISPR and stable shRNA approaches validated using standard rescue experiments. We identify the underlying mechanism: MutL deficiency in ER+ breast cancer abrogates Chk2-mediated feedback inhibition of CDK4/6 that appears necessary for endocrine therapy responsiveness. Consequently, pharmacological targeting of CDK4/6 in vitro and in vivo significantly inhibits growth of endocrine therapy resistant MutL-deficient ER+ breast cancer cells. These results are corroborated by data from a neoadjuvant clinical trial demonstrating that cell cycle regulation of MutL-mutant tumors tends to be estrogen-independent but sensitive to CDK4/6 inhibitors. The results of this study provide important biological and clinically relevant insights. 1) MMR deficiency is unexpectedly causal to intrinsic endocrine therapy resistance 2) This causal effect appears to be mediated by abrogation of cell cycle checkpoint activation in response to endocrine therapy 3) MMR deficiency in a subset of ER+ tumors explains why CDK4/6 inhibition is effective against some de novo endocrine therapy resistant tumors. While there are currently no biomarkers to guide the use of CDK4/6 inhibitors for ER+ breast cancer, markers of MMR dysregulation could identify patients in whom CDK4/6 inhibition should be used to prevent disease recurrence. Citation Format: Svasti Haricharan, Jacob Schmelz, Cheryl Schmidt, Purba Singh, Kimberly R. Holloway, Meenakshi Anurag, Shunqiang Li, Shyam M. Kavuri, Shixia Huang, Dean P. Edwards, Vera Suman, Kelly Hunt, John A. Olson, Jeremy Hoog, Cynthia X. Ma, Matthew N. Bainbridge, Matthew J. Ellis. Mismatch repair defects and endocrine therapy resistance in estrogen receptor positive breast cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 489. doi:10.1158/1538-7445.AM2017-489


Cancer Research | 2017

Abstract PD2-06: Mismatch repair deficiency induces endocrine therapy resistance in breast cancer

Svasti Haricharan; Jacob Schmelz; Cheryl Schmidt; Purba Singh; Kimberly R. Holloway; Meenakshi Anurag; Vera J. Suman; John A. Olson; Kelly K. Hunt; Matthew N. Bainbridge; Matthew J. Ellis

Estrogen receptor positive (ER+) breast cancer accounts for the majority of breast cancers diagnosed worldwide but fortunately, outcomes are markedly improved by pharmacological interventions that interrupt ER function. Unfortunately, suppression of relapse risk from early stage disease with endocrine therapy (anti-estrogens or aromatase inhibitors) is only ∼50%, and for advanced disease, pan endocrine therapy resistance is almost inevitable. While many mechanisms for intrinsic and acquired endocrine resistance have been explored, links between defects in DNA repair, the fundamental drivers of cancer pathogenesis, and endocrine therapy resistance have been understudied. Here we link mismatch repair (MMR) deficiency to poor clinical outcomes in ER+ breast cancer using whole exome DNA sequencing data and mRNA expression analysis. We subsequently demonstrate that MMR deficiency bypasses ER dependent cell cycle regulation through disruption of Chk2/p21-mediated feedback inhibition of CDK4 in breast cancer cell lines and tumor samples, as well as through correlations with human clinical data. We also show that pharmacological targeting of CDK4 significantly inhibits growth of MMR-deficient ER+ breast cancer cells in vitro and in vivo. This mechanism provides a new explanation for why endocrine therapy resistant ER+ breast cancers can respond to CDK inhibition and suggests that primary tumors exhibiting MMR deficiency are good candidates for adjuvant CDK4 inhibitor treatment. Citation Format: Haricharan S, Schmelz J, Schmidt C, Singh P, Holloway K, Anurag M, Suman V, Olson JA, Hunt K, Bainbridge MN, Ellis MJ. Mismatch repair deficiency induces endocrine therapy resistance in breast cancer [abstract]. In: Proceedings of the 2016 San Antonio Breast Cancer Symposium; 2016 Dec 6-10; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2017;77(4 Suppl):Abstract nr PD2-06.


Cancer Research | 2017

Abstract 1033: Estrogen receptor gene fusions drive endocrine therapy resistance in estrogen receptor positive breast cancer

Jonathan T. Lei; Jieya Shao; Jin Zhang; Michael D. Iglesia; Doug W. Chan; Ryoichi Matsunuma; Xiaping He; Purba Singh; Yoshimasa Kosaka; Robert Crowder; Svasti Haricharan; Shyam M. Kavuri; Jeremy Hoog; Chanpheng Phommaly; Rodrigo Franco Gonçalves; Susana Romalho; Wei-Chu Lai; Oliver A. Hampton; Anna Rogers; Ethan Tobias; Poojan Parikh; Sherri R. Davies; Cynthia X. Ma; Vera J. Suman; Kelly K. Hunt; Mark A. Watson; Katherine A. Hoadley; Aubrey E. Thompson; Charles M. Perou; Chad J. Creighton

Dysregulation of estrogen receptor gene (ESR1) is an established mechanism of inducing endocrine therapy resistance. We previously discovered a chromosomal translocation event generating an estrogen receptor gene fused in-frame to C-terminal sequences of YAP1 (ESR1-YAP1) that contributed to endocrine therapy resistance in estrogen receptor positive (ER+) breast cancer models. This current study compares functional and pharmacological properties of additional ESR1 gene fusion events of both early stage (ESR1-NOP2) and advanced endocrine therapy resistant (ESR1-YAP1 and ESR1-PCDH11x) breast cancers. The YAP1 and PCDH11x fusions conferred estrogen-independent and fulvestrant-resistant growth in T47D, an ER+ breast cancer cell line in vitro and in vivo, in contrast to the NOP2 fusion which was sensitive to hormone deprivation. Immunohistochemical (IHC) staining of mouse lungs revealed significantly higher numbers of micrometastatic ER+ cells from the T47D tumors expressing the YAP1 and PCDH11x fusions than YFP control and NOP2 fusion. Estrogen response element (ERE) reporter and pull down assays revealed that although all ESR1 fusions studied bound EREs, only the YAP1 and PCDH11x caused ERE activation. Cell lines containing these “canonical” ESR1 fusions upregulated expression of ER responsive genes such as TFF1 and GREB1 in hormone deprived conditions. In contrast, the NOP2 fusion neither induced ERE activity nor upregulated TFF1 and GREB1 gene expression. The proliferative ability of canonical fusion-containing T47D cells was inhibited by palbociclib, a CDK4/6 inhibitor, in a dose-dependent manner. In vivo growth of patient-derived xenograft tumors naturally harboring the ESR1-YAP1 fusion (WHIM18) was significantly reduced in mice fed palbociclib-containing chow. Mice transplanted with WHIM18 also formed lung micrometastases, with an ER IHC staining pattern similar to lungs from YAP1 and PCDH11x fusion expressing T47D xenografts. In conclusion, in-frame ERE activating canonical fusions occur in end-stage, drug resistant, advanced breast cancer and can be added to ESR1 point mutations as a class of somatic mutation that may cause acquired resistance. Endocrine therapy resistant growth induced by these fusions can be treated with CDK4/6 inhibition, using an FDA approved drug, palbociclib, which could potentially improve outcomes in patients with ESR1 translocated tumors. Citation Format: Jonathan T. Lei, Jieya Shao, Jin Zhang, Michael Iglesia, Doug W. Chan, Ryoichi Matsunuma, Xiaping He, Purba Singh, Yoshimasa Kosaka, Robert Crowder, Svasti Haricharan, Shyam Kavuri, Jeremy Hoog, Chanpheng Phommaly, Rodrigo Goncalves, Susana Romalho, Wei-Chu Lai, Oliver Hampton, Anna Rogers, Ethan Tobias, Poojan Parikh, Sherri Davies, Cynthia Ma, Vera Suman, Kelly Hunt, Mark Watson, Katherine A. Hoadley, Aubrey Thompson, Charles Perou, Chad J. Creighton, Chris Maher, Matthew J. Ellis. Estrogen receptor gene fusions drive endocrine therapy resistance in estrogen receptor positive breast cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 1033. doi:10.1158/1538-7445.AM2017-1033


Molecular & Cellular Proteomics | 2018

gpGrouper: A Peptide Grouping Algorithm for Gene-Centric Inference and Quantitation of Bottom-Up Proteomics Data

Alexander B Saltzman; Mei Leng; Bhoomi Bhatt; Purba Singh; Doug W. Chan; Lacey E. Dobrolecki; Hamssika Chandrasekaran; Jong Min Choi; Antrix Jain; Sung Yun Jung; Michael T. Lewis; Matthew J. Ellis; Anna Malovannaya


Cancer Research | 2018

Abstract 5240: Functional and therapeutic significance ofESR1gene fusions in breast cancer

Jonathan T. Lei; Jieya Shao; Jin Zhang; Michael D. Iglesia; Doug W. Chan; Jin Cao; Meenakshi Anurag; Purba Singh; Xiaping He; Yoshimasa Kosaka; Ryoichi Matsunuma; Robert Crowder; Jeremy Hoog; Chanpheng Phommaly; Rodrigo Gonçalves; Susana Romalho; Raquel Mary Rodrigues Peres; Nindo Punturi; Cheryl Schmidt; Alex Bartram; Eric Jou; W V. Lai; Oliver A. Hampton; Anna Rogers; Ethan Tobias; P Parikh; Sherri R. Davies; Shunqiang Li; Cynthia X. Ma; Vera J. Suman

Collaboration


Dive into the Purba Singh's collaboration.

Top Co-Authors

Avatar

Jeremy Hoog

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jonathan T. Lei

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Matthew J. Ellis

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Meenakshi Anurag

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Shunqiang Li

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Cheryl Schmidt

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Doug W. Chan

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Shyam M. Kavuri

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Svasti Haricharan

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge