Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Douglas J. Bakkum is active.

Publication


Featured researches published by Douglas J. Bakkum.


Frontiers in Neuroscience | 2015

Revealing neuronal function through microelectrode array recordings.

Marie Engelene J. Obien; Kosmas Deligkaris; Torsten Bullmann; Douglas J. Bakkum; Urs Frey

Microelectrode arrays and microprobes have been widely utilized to measure neuronal activity, both in vitro and in vivo. The key advantage is the capability to record and stimulate neurons at multiple sites simultaneously. However, unlike the single-cell or single-channel resolution of intracellular recording, microelectrodes detect signals from all possible sources around every sensor. Here, we review the current understanding of microelectrode signals and the techniques for analyzing them. We introduce the ongoing advancements in microelectrode technology, with focus on achieving higher resolution and quality of recordings by means of monolithic integration with on-chip circuitry. We show how recent advanced microelectrode array measurement methods facilitate the understanding of single neurons as well as network function.


IEEE Journal of Solid-state Circuits | 2010

Switch-Matrix-Based High-Density Microelectrode Array in CMOS Technology

Urs Frey; Jan Sedivy; Flavio Heer; Rene Pedron; Marco Ballini; Jan Mueller; Douglas J. Bakkum; Sadik Hafizovic; Francesca Dalia Faraci; Frauke Greve; K.-U. Kirstein; Andreas Hierlemann

We report on a CMOS-based microelectrode array (MEA) featuring 11, 011 metal electrodes and 126 channels, each of which comprises recording and stimulation electronics, for extracellular bidirectional communication with electrogenic cells, such as neurons or cardiomyocytes. The important features include: (i) high spatial resolution at (sub)cellular level with 3150 electrodes per mm2 (electrode diameter 7 ¿m, electrode pitch 18 ¿m); (ii) a reconflgurable routing of the recording sites to the 126 channels; and (iii) low noise levels.


Nature Communications | 2013

Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites

Douglas J. Bakkum; Urs Frey; Milos Radivojevic; Thomas L. Russell; Jan Müller; Michele Fiscella; Hirokazu Takahashi; Andreas Hierlemann

Axons are traditionally considered stable transmission cables, but evidence of the regulation of action potential propagation demonstrates that axons may have more important roles. However, their small diameters render intracellular recordings challenging, and low-magnitude extracellular signals are difficult to detect and assign. Better experimental access to axonal function would help to advance this field. Here we report methods to electrically visualize action potential propagation and network topology in cortical neurons grown over custom arrays, which contain 11,011 microelectrodes and are fabricated using complementary metal oxide semiconductor technology. Any neuron lying on the array can be recorded at high spatio-temporal resolution, and simultaneously precisely stimulated with little artifact. We find substantial velocity differences occurring locally within single axons, suggesting that the temporal control of a neurons output may contribute to neuronal information processing.


PLOS ONE | 2008

Long-Term Activity-Dependent Plasticity of Action Potential Propagation Delay and Amplitude in Cortical Networks

Douglas J. Bakkum; Zenas C. Chao; Steve M. Potter

Background The precise temporal control of neuronal action potentials is essential for regulating many brain functions. From the viewpoint of a neuron, the specific timings of afferent input from the action potentials of its synaptic partners determines whether or not and when that neuron will fire its own action potential. Tuning such input would provide a powerful mechanism to adjust neuron function and in turn, that of the brain. However, axonal plasticity of action potential timing is counter to conventional notions of stable propagation and to the dominant theories of activity-dependent plasticity focusing on synaptic efficacies. Methodology/Principal Findings Here we show the occurrence of activity-dependent plasticity of action potential propagation delays (up to 4 ms or 40% after minutes and 13 ms or 74% after hours) and amplitudes (up to 87%). We used a multi-electrode array to induce, detect, and track changes in propagation in multiple neurons while they adapted to different patterned stimuli in controlled neocortical networks in vitro. The changes did not occur when the same stimulation was repeated while blocking ionotropic gabaergic and glutamatergic receptors. Even though induction of changes in action potential timing and amplitude depended on synaptic transmission, the expression of these changes persisted in the presence of the synaptic receptor blockers. Conclusions/Significance We conclude that, along with changes in synaptic efficacy, propagation plasticity provides a cellular mechanism to tune neuronal network function in vitro and potentially learning and memory in the brain.


Journal of Neural Engineering | 2008

Spatio-temporal electrical stimuli shape behavior of an embodied cortical network in a goal-directed learning task

Douglas J. Bakkum; Zenas C. Chao; Steve M. Potter

We developed an adaptive training algorithm, whereby an in vitro neocortical network learned to modulate its dynamics and achieve pre-determined activity states within tens of minutes through the application of patterned training stimuli using a multi-electrode array. A priori knowledge of functional connectivity was not necessary. Instead, effective training sequences were continuously discovered and refined based on real-time feedback of performance. The short-term neural dynamics in response to training became engraved in the network, requiring progressively fewer training stimuli to achieve successful behavior in a movement task. After 2 h of training, plasticity remained significantly greater than the baseline for 80 min (p-value<0.01). Interestingly, a given sequence of effective training stimuli did not induce significant plasticity (p-value=0.82) or desired behavior, when replayed to the network and no longer contingent on feedback. Our results encourage an in vivo investigation of how targeted multi-site artificial stimulation of the brain, contingent on the activity of the body or even of the brain itself could treat neurological disorders by gradually shaping functional connectivity.


Lecture Notes in Computer Science | 2004

Removing Some ‘A’ from AI: Embodied Cultured Networks

Douglas J. Bakkum; Alexander C. Shkolnik; Guy Ben-Ary; Phil Gamblen; Thomas B. DeMarse; Steve M. Potter

We embodied networks of cultured biological neurons in simulation and in robotics. This is a new research paradigm to study learning, memory, and information processing in real time: the Neurally-Controlled Animat. Neural activity was subject to detailed electrical and optical observation using multi-electrode arrays and microscopy in order to access the neural correlates of animat behavior. Neurobiology has given inspiration to AI since the advent of the perceptron and consequent artificial neural networks, developed using local properties of individual neurons. We wish to continue this trend by studying the network processing of ensembles of living neurons that lead to higher-level cognition and intelligent behavior.


Frontiers in Neural Circuits | 2012

High-density microelectrode array recordings and real-time spike sorting for closed-loop experiments: an emerging technology to study neural plasticity

Felix Franke; David Jäckel; Jelena Dragas; Jan Müller; Milos Radivojevic; Douglas J. Bakkum; Andreas Hierlemann

Understanding plasticity of neural networks is a key to comprehending their development and function. A powerful technique to study neural plasticity includes recording and control of pre- and post-synaptic neural activity, e.g., by using simultaneous intracellular recording and stimulation of several neurons. Intracellular recording is, however, a demanding technique and has its limitations in that only a small number of neurons can be stimulated and recorded from at the same time. Extracellular techniques offer the possibility to simultaneously record from larger numbers of neurons with relative ease, at the expenses of increased efforts to sort out single neuronal activities from the recorded mixture, which is a time consuming and error prone step, referred to as spike sorting. In this mini-review, we describe recent technological developments in two separate fields, namely CMOS-based high-density microelectrode arrays, which also allow for extracellular stimulation of neurons, and real-time spike sorting. We argue that these techniques, when combined, will provide a powerful tool to study plasticity in neural networks consisting of several thousand neurons in vitro.


IEEE Journal of Solid-state Circuits | 2014

A 1024-Channel CMOS Microelectrode Array With 26,400 Electrodes for Recording and Stimulation of Electrogenic Cells In Vitro

Marco Ballini; Jan Müller; Paolo Livi; Yihui Chen; Urs Frey; Alexander Stettler; Amir Shadmani; Vijay Viswam; Ian L. Jones; David Jäckel; Milos Radivojevic; Marta K. Lewandowska; Wei Gong; Michele Fiscella; Douglas J. Bakkum; Flavio Heer; Andreas Hierlemann

To advance our understanding of the functioning of neuronal ensembles, systems are needed to enable simultaneous recording from a large number of individual neurons at high spatiotemporal resolution and good signal-to-noise ratio. Moreover, stimulation capability is highly desirable for investigating, for example, plasticity and learning processes. Here, we present a microelectrode array (MEA) system on a single CMOS die for in vitro recording and stimulation. The system incorporates 26,400 platinum electrodes, fabricated by in-house post-processing, over a large sensing area (3.85 2.10 mm ) with sub-cellular spatial resolution (pitch of 17.5 μm). Owing to an area and power efficient implementation, we were able to integrate 1024 readout channels on chip to record extracellular signals from a user-specified selection of electrodes. These channels feature noise values of 2.4 μV in the action-potential band (300 Hz-10 kHz) and 5.4 μV in the local-field-potential band (1 Hz-300 Hz), and provide programmable gain (up to 78 dB) to accommodate various biological preparations. Amplified and filtered signals are digitized by 10 bit parallel single-slope ADCs at 20 kSamples/s. The system also includes 32 stimulation units, which can elicit neural spikes through either current or voltage pulses. The chip consumes only 75 mW in total, which obviates the need of active cooling even for sensitive cell cultures.


PLOS Computational Biology | 2008

Shaping Embodied Neural Networks for Adaptive Goal-directed Behavior

Zenas C. Chao; Douglas J. Bakkum; Steve M. Potter

The acts of learning and memory are thought to emerge from the modifications of synaptic connections between neurons, as guided by sensory feedback during behavior. However, much is unknown about how such synaptic processes can sculpt and are sculpted by neuronal population dynamics and an interaction with the environment. Here, we embodied a simulated network, inspired by dissociated cortical neuronal cultures, with an artificial animal (an animat) through a sensory-motor loop consisting of structured stimuli, detailed activity metrics incorporating spatial information, and an adaptive training algorithm that takes advantage of spike timing dependent plasticity. By using our design, we demonstrated that the network was capable of learning associations between multiple sensory inputs and motor outputs, and the animat was able to adapt to a new sensory mapping to restore its goal behavior: move toward and stay within a user-defined area. We further showed that successful learning required proper selections of stimuli to encode sensory inputs and a variety of training stimuli with adaptive selection contingent on the animats behavior. We also found that an individual network had the flexibility to achieve different multi-task goals, and the same goal behavior could be exhibited with different sets of network synaptic strengths. While lacking the characteristic layered structure of in vivo cortical tissue, the biologically inspired simulated networks could tune their activity in behaviorally relevant manners, demonstrating that leaky integrate-and-fire neural networks have an innate ability to process information. This closed-loop hybrid system is a useful tool to study the network properties intermediating synaptic plasticity and behavioral adaptation. The training algorithm provides a stepping stone towards designing future control systems, whether with artificial neural networks or biological animats themselves.


Neuroinformatics | 2005

Effects of Random External Background Stimulation on Network Synaptic Stability After Tetanization: A Modeling Study

Zenas C. Chao; Douglas J. Bakkum; Daniel A. Wagenaar; Steve M. Potter

We constructed a simulated spiking neural network model to investigate the effects of random background stimulation on the dynamics of network activity patterns and tetanus induced network plasticity. The simulated model was a “leaky integrate-and-fire” (LIF) neural model with spike-timing-dependent plasticity (STDP) and frequency-dependent synaptic depression. Spontaneous and evoked activity patterns were compared with those of living neuronal networks cultured on multielectrode arrays. To help visualize activity patterns and plasticity in our simulated model, we introduced new population measures called Center of Activity (CA) and Center of Weights (CW) to describe the spatio-temporal dynamics of network-wide firing activity and network-wide synaptic strength, respectively. Without random background stimulation, the network synaptic weights were unstable and often drifted after tetanization. In contrast, with random background stimulation, the network synaptic weights remained close to their values immediately after tetanization. The simulation suggests that the effects of tetanization on network synaptic weights were difficult to control because of ongoing synchronized spontaneous bursts of action potentials, or “barrages.” Random background stimulation helped maintain network synaptic stability after tetanization by reducing the number and thus the influence of spontaneous barrages. We used our simulated network to model the interaction between ongoing neural activity, external stimulation and plasticity, and to guide our choice of sensory-motor mappings for adaptive behavior in hybrid neural-robotic systems or “hybrots.”

Collaboration


Dive into the Douglas J. Bakkum's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steve M. Potter

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zenas C. Chao

RIKEN Brain Science Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge