Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Milos Radivojevic is active.

Publication


Featured researches published by Milos Radivojevic.


Nature Communications | 2013

Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites

Douglas J. Bakkum; Urs Frey; Milos Radivojevic; Thomas L. Russell; Jan Müller; Michele Fiscella; Hirokazu Takahashi; Andreas Hierlemann

Axons are traditionally considered stable transmission cables, but evidence of the regulation of action potential propagation demonstrates that axons may have more important roles. However, their small diameters render intracellular recordings challenging, and low-magnitude extracellular signals are difficult to detect and assign. Better experimental access to axonal function would help to advance this field. Here we report methods to electrically visualize action potential propagation and network topology in cortical neurons grown over custom arrays, which contain 11,011 microelectrodes and are fabricated using complementary metal oxide semiconductor technology. Any neuron lying on the array can be recorded at high spatio-temporal resolution, and simultaneously precisely stimulated with little artifact. We find substantial velocity differences occurring locally within single axons, suggesting that the temporal control of a neurons output may contribute to neuronal information processing.


Frontiers in Neural Circuits | 2012

High-density microelectrode array recordings and real-time spike sorting for closed-loop experiments: an emerging technology to study neural plasticity

Felix Franke; David Jäckel; Jelena Dragas; Jan Müller; Milos Radivojevic; Douglas J. Bakkum; Andreas Hierlemann

Understanding plasticity of neural networks is a key to comprehending their development and function. A powerful technique to study neural plasticity includes recording and control of pre- and post-synaptic neural activity, e.g., by using simultaneous intracellular recording and stimulation of several neurons. Intracellular recording is, however, a demanding technique and has its limitations in that only a small number of neurons can be stimulated and recorded from at the same time. Extracellular techniques offer the possibility to simultaneously record from larger numbers of neurons with relative ease, at the expenses of increased efforts to sort out single neuronal activities from the recorded mixture, which is a time consuming and error prone step, referred to as spike sorting. In this mini-review, we describe recent technological developments in two separate fields, namely CMOS-based high-density microelectrode arrays, which also allow for extracellular stimulation of neurons, and real-time spike sorting. We argue that these techniques, when combined, will provide a powerful tool to study plasticity in neural networks consisting of several thousand neurons in vitro.


IEEE Journal of Solid-state Circuits | 2014

A 1024-Channel CMOS Microelectrode Array With 26,400 Electrodes for Recording and Stimulation of Electrogenic Cells In Vitro

Marco Ballini; Jan Müller; Paolo Livi; Yihui Chen; Urs Frey; Alexander Stettler; Amir Shadmani; Vijay Viswam; Ian L. Jones; David Jäckel; Milos Radivojevic; Marta K. Lewandowska; Wei Gong; Michele Fiscella; Douglas J. Bakkum; Flavio Heer; Andreas Hierlemann

To advance our understanding of the functioning of neuronal ensembles, systems are needed to enable simultaneous recording from a large number of individual neurons at high spatiotemporal resolution and good signal-to-noise ratio. Moreover, stimulation capability is highly desirable for investigating, for example, plasticity and learning processes. Here, we present a microelectrode array (MEA) system on a single CMOS die for in vitro recording and stimulation. The system incorporates 26,400 platinum electrodes, fabricated by in-house post-processing, over a large sensing area (3.85 2.10 mm ) with sub-cellular spatial resolution (pitch of 17.5 μm). Owing to an area and power efficient implementation, we were able to integrate 1024 readout channels on chip to record extracellular signals from a user-specified selection of electrodes. These channels feature noise values of 2.4 μV in the action-potential band (300 Hz-10 kHz) and 5.4 μV in the local-field-potential band (1 Hz-300 Hz), and provide programmable gain (up to 78 dB) to accommodate various biological preparations. Amplified and filtered signals are digitized by 10 bit parallel single-slope ADCs at 20 kSamples/s. The system also includes 32 stimulation units, which can elicit neural spikes through either current or voltage pulses. The chip consumes only 75 mW in total, which obviates the need of active cooling even for sensitive cell cultures.


Frontiers in Computational Neuroscience | 2014

Parameters for burst detection

Douglas J. Bakkum; Milos Radivojevic; Urs Frey; Felix Franke; Andreas Hierlemann; Hirokazu Takahashi

Bursts of action potentials within neurons and throughout networks are believed to serve roles in how neurons handle and store information, both in vivo and in vitro. Accurate detection of burst occurrences and durations are therefore crucial for many studies. A number of algorithms have been proposed to do so, but a standard method has not been adopted. This is due, in part, to many algorithms requiring the adjustment of multiple ad-hoc parameters and further post-hoc criteria in order to produce satisfactory results. Here, we broadly catalog existing approaches and present a new approach requiring the selection of only a single parameter: the number of spikes N comprising the smallest burst to consider. A burst was identified if N spikes occurred in less than T ms, where the threshold T was automatically determined from observing a probability distribution of inter-spike-intervals. Performance was compared vs. different classes of detectors on data gathered from in vitro neuronal networks grown over microelectrode arrays. Our approach offered a number of useful features including: a simple implementation, no need for ad-hoc or post-hoc criteria, and precise assignment of burst boundary time points. Unlike existing approaches, detection was not biased toward larger bursts, allowing identification and analysis of a greater range of neuronal and network dynamics.


Scientific Reports | 2016

Electrical Identification and Selective Microstimulation of Neuronal Compartments Based on Features of Extracellular Action Potentials

Milos Radivojevic; David Jäckel; Michael Altermatt; Jan Müller; Vijay Viswam; Andreas Hierlemann; Douglas J. Bakkum

A detailed, high-spatiotemporal-resolution characterization of neuronal responses to local electrical fields and the capability of precise extracellular microstimulation of selected neurons are pivotal for studying and manipulating neuronal activity and circuits in networks and for developing neural prosthetics. Here, we studied cultured neocortical neurons by using high-density microelectrode arrays and optical imaging, complemented by the patch-clamp technique, and with the aim to correlate morphological and electrical features of neuronal compartments with their responsiveness to extracellular stimulation. We developed strategies to electrically identify any neuron in the network, while subcellular spatial resolution recording of extracellular action potential (AP) traces enabled their assignment to the axon initial segment (AIS), axonal arbor and proximal somatodendritic compartments. Stimulation at the AIS required low voltages and provided immediate, selective and reliable neuronal activation, whereas stimulation at the soma required high voltages and produced delayed and unreliable responses. Subthreshold stimulation at the soma depolarized the somatic membrane potential without eliciting APs.


Scientific Reports | 2017

Combination of High-density Microelectrode Array and Patch Clamp Recordings to Enable Studies of Multisynaptic Integration

David Jäckel; Douglas J. Bakkum; Thomas L. Russell; Jan Müller; Milos Radivojevic; Urs Frey; Felix Franke; Andreas Hierlemann

We present a novel, all-electric approach to record and to precisely control the activity of tens of individual presynaptic neurons. The method allows for parallel mapping of the efficacy of multiple synapses and of the resulting dynamics of postsynaptic neurons in a cortical culture. For the measurements, we combine an extracellular high-density microelectrode array, featuring 11’000 electrodes for extracellular recording and stimulation, with intracellular patch-clamp recording. We are able to identify the contributions of individual presynaptic neurons - including inhibitory and excitatory synaptic inputs - to postsynaptic potentials, which enables us to study dendritic integration. Since the electrical stimuli can be controlled at microsecond resolution, our method enables to evoke action potentials at tens of presynaptic cells in precisely orchestrated sequences of high reliability and minimum jitter. We demonstrate the potential of this method by evoking short- and long-term synaptic plasticity through manipulation of multiple synaptic inputs to a specific neuron.


eLife | 2017

Tracking individual action potentials throughout mammalian axonal arbors

Milos Radivojevic; Felix Franke; Michael Altermatt; Jan Müller; Andreas Hierlemann; Douglas J. Bakkum

Axons are neuronal processes specialized for conduction of action potentials (APs). The timing and temporal precision of APs when they reach each of the synapses are fundamentally important for information processing in the brain. Due to small diameters of axons, direct recording of single AP transmission is challenging. Consequently, most knowledge about axonal conductance derives from modeling studies or indirect measurements. We demonstrate a method to noninvasively and directly record individual APs propagating along millimeter-length axonal arbors in cortical cultures with hundreds of microelectrodes at microsecond temporal resolution. We find that cortical axons conduct single APs with high temporal precision (~100 µs arrival time jitter per mm length) and reliability: in more than 8,000,000 recorded APs, we did not observe any conduction or branch-point failures. Upon high-frequency stimulation at 100 Hz, successive became slower, and their arrival time precision decreased by 20% and 12% for the 100th AP, respectively.


Frontiers in Neuroscience | 2016

Multiple Single-Unit Long-Term Tracking on Organotypic Hippocampal Slices Using High-Density Microelectrode Arrays

Wei Gong; Jure Senčar; Douglas J. Bakkum; David Jäckel; Marie Engelene J. Obien; Milos Radivojevic; Andreas Hierlemann

A novel system to cultivate and record from organotypic brain slices directly on high-density microelectrode arrays (HD-MEA) was developed. This system allows for continuous recording of electrical activity of specific individual neurons at high spatial resolution while monitoring at the same time, neuronal network activity. For the first time, the electrical activity patterns of single neurons and the corresponding neuronal network in an organotypic hippocampal slice culture were studied during several consecutive weeks at daily intervals. An unsupervised iterative spike-sorting algorithm, based on PCA and k-means clustering, was developed to assign the activities to the single units. Spike-triggered average extracellular waveforms of an action potential recorded across neighboring electrodes, termed “footprints” of single-units were generated and tracked over weeks. The developed system offers the potential to study chronic impacts of drugs or genetic modifications on individual neurons in slice preparations over extended times.


international conference on solid state sensors actuators and microsystems | 2015

Long-term, high-spatiotemporal resolution recording from cultured organotypic slices with high-density microelectrode arrays

Wei Gong; J. Sencar; David Jäckel; Jan Müller; Michele Fiscella; Milos Radivojevic; Douglas J. Bakkum; Andreas Hierlemann

A novel system to cultivate and record brain slices directly on high-density microelectrode arrays (HD-MEA) was developed. This system allows to continuously record electrical activity of selected individual neurons at high spatial resolution, while monitoring neuronal network activity at the same time. For the first time, properties of single neurons and the corresponding neuronal network in an organotypic hippocampal slice culture were studied over four consecutive weeks at daily intervals.


bioRxiv | 2018

The axon initial segment drives the neuron's extracellular action potential

Douglas J. Bakkum; Milos Radivojevic; Marie Engelene J. Obien; David Jaeckel; Urs Frey; Hirokazu Takahashi; Andreas Hierlemann

Extracellular voltage fields produced by a neuron’s action potentials provide a primary means for studying neuron function, yet their biophysical sources remain ambiguous. The neuron’s soma and dendrites are thought to drive the extracellular action potential (EAP), while the axon is usually ignored. However, by recording voltages of single neurons in dissociated rat cortical cultures and Purkinje cells in acute mouse cerebellar slices at hundreds of sites, we find instead that the axon initial segment dominates the EAP, and, surprisingly, the soma shows little or no influence. As expected, this signal has negative polarity (charge entering the cell) and initiates at the distal end. Interestingly, signals with positive polarity (charge exiting the cell) occur near some but not all dendritic branches and occur after a delay. Such basic knowledge about which neuronal compartments contribute to the extracellular voltage field is important for interpreting results from all electrical readout schemes. Moreover, this finding shows that changes in the AIS position and function can be observed in high spatiotemporal detail by means of high-density extracellular electrophysiology. Key points summary The neuron’s soma and dendrites are thought to give rise to its extracellular voltage signal, while signals from the axon are usually considered negligible. Instead, we found that the largest amplitude of the extracellular signal originates from the axon initial segment, not from the soma. This finding shows that changes in the AIS position and function can be observed in high spatiotemporal detail by means of high-density extracellular electrophysiology. Abbreviations ACSF artificial cerebrospinal fluid AIS axon initial segment AnkG ankyrin-G CMOS complementary-metal-oxide-semiconductor DMEM Dulbecco’s modified eagle medium EAP extracellular action potential GAD67-GFP glutamic acid decarboxylase 67-green fluorescent protein MAP2 microtubule-associated protein 2.

Collaboration


Dive into the Milos Radivojevic's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge