Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Linda M. Yamamoto is active.

Publication


Featured researches published by Linda M. Yamamoto.


Journal of Athletic Training | 2010

Influence of Hydration on Physiological Function and Performance During Trail Running in the Heat

Douglas J. Casa; Rebecca L. Stearns; Rebecca M. Lopez; Brendon P. McDermott; Susan W. Yeargin; Linda M. Yamamoto; Stephanie M. Mazerolle; Melissa W. Roti; Lawrence E. Armstrong; Carl M. Maresh

CONTEXT Authors of most field studies have not observed decrements in physiologic function and performance with increases in dehydration, although authors of well-controlled laboratory studies have consistently reported this relationship. Investigators in these field studies did not control exercise intensity, a known modulator of body core temperature. OBJECTIVE To directly examine the effect of moderate water deficit on the physiologic responses to various exercise intensities in a warm outdoor setting. DESIGN Semirandomized, crossover design. SETTING Field setting. PATIENTS OR OTHER PARTICIPANTS Seventeen distance runners (9 men, 8 women; age = 27 +/- 7 years, height = 171 +/- 9 cm, mass = 64.2 +/- 9.0 kg, body fat = 14.6% +/- 5.5%). INTERVENTION(S) Participants completed four 12-km runs (consisting of three 4-km loops) in the heat (average wet bulb globe temperature = 26.5 degrees C): (1) a hydrated, race trial (HYR), (2) a dehydrated, race trial (DYR), (3) a hydrated, submaximal trial (HYS), and (4) a dehydrated, submaximal trial (DYS). MAIN OUTCOME MEASURE(S) For DYR and DYS trials, dehydration was measured by body mass loss. In the submaximal trials, participants ran at a moderate pace that was matched by having them speed up or slow down based on pace feedback provided by researchers. Intestinal temperature was recorded using ingestible thermistors, and participants wore heart rate monitors to measure heart rate. RESULTS Body mass loss in relation to a 3-day baseline was greater for the DYR (-4.30% +/- 1.25%) and DYS trials (-4.59% +/- 1.32%) than for the HYR (-2.05% +/- 1.09%) and HYS (-2.0% +/- 1.24%) trials postrun (P < .001). Participants ran faster for the HYR (53.15 +/- 6.05 minutes) than for the DYR (55.7 +/- 7.45 minutes; P < .01), but speed was similar for HYS (59.57 +/- 5.31 minutes) and DYS (59.44 +/- 5.44 minutes; P > .05). Intestinal temperature immediately postrun was greater for DYR than for HYR (P < .05), the only significant difference. Intestinal temperature was greater for DYS than for HYS postloop 2, postrun, and at 10 and 20 minutes postrun (all: P < .001). Intestinal temperature and heart rate were 0.22 degrees C and 6 beats/min higher, respectively, for every additional 1% body mass loss during the DYS trial compared with the HYS trial. CONCLUSIONS A small decrement in hydration status impaired physiologic function and performance while trail running in the heat.


Journal of Applied Physiology | 2008

Effect of hydration state on resistance exercise-induced endocrine markers of anabolism, catabolism, and metabolism

Daniel A. Judelson; Carl M. Maresh; Linda M. Yamamoto; Mark J. Farrell; Lawrence E. Armstrong; William J. Kraemer; Jeff S. Volek; Barry A. Spiering; Douglas J. Casa; Jeffrey M. Anderson

Hypohydration (decreased total body water) exacerbates the catabolic hormonal response to endurance exercise with unclear effects on anabolic hormones. Limited research exists that evaluates the effect of hypohydration on endocrine responses to resistance exercise; this work merits attention as the acute postexercise hormonal environment potently modulates resistance training adaptations. The purpose of this study was to examine the effect of hydration state on the endocrine and metabolic responses to resistance exercise. Seven healthy resistance-trained men (age = 23 +/- 4 yr, body mass = 87.8 +/- 6.8 kg, body fat = 11.5 +/- 5.2%) completed three identical resistance exercise bouts in different hydration states: euhydrated (EU), hypohydrated by approximately 2.5% body mass (HY25), and hypohydrated by approximately 5.0% body mass (HY50). Investigators manipulated hydration status via controlled water deprivation and exercise-heat stress. Cortisol, epinephrine, norepinephrine, testosterone, growth hormone, insulin-like growth factor-I, insulin, glucose, lactate, glycerol, and free fatty acids were measured during euhydrated rest, immediately preceding resistance exercise, immediately postexercise, and during 60 min of recovery. Body mass decreased 0.2 +/- 0.4, 2.4 +/- 0.4, and 4.8 +/- 0.4% during EU, HY25, and HY50, respectively, supported by humoral and urinary changes that clearly indicated subjects achieved three distinct hydration states. Hypohydration significantly 1) increased circulating concentrations of cortisol and norepinephrine, 2) attenuated the testosterone response to exercise, and 3) altered carbohydrate and lipid metabolism. These results suggest that hypohydration can modify the hormonal and metabolic response to resistance exercise, influencing the postexercise circulatory milieu.


Journal of Athletic Training | 2010

The American Football Uniform: Uncompensable Heat Stress and Hyperthermic Exhaustion

Lawrence E. Armstrong; Evan C. Johnson; Douglas J. Casa; Brendon P. McDermott; Linda M. Yamamoto; Rebecca M. Lopez; Holly Emmanuel

CONTEXT In hot environments, the American football uniform predisposes athletes to exertional heat exhaustion or exercise-induced hyperthermia at the threshold for heat stroke (rectal temperature [T(re)] > 39 degrees C). OBJECTIVE To evaluate the differential effects of 2 American football uniform configurations on exercise, thermal, cardiovascular, hematologic, and perceptual responses in a hot, humid environment. DESIGN Randomized controlled trial. SETTING Human Performance Laboratory. PATIENTS OR OTHER PARTICIPANTS Ten men with more than 3 years of competitive experience as football linemen (age = 23.8 +/- 4.3 years, height = 183.9 +/- 6.3 cm, mass = 117.41 +/- 12.59 kg, body fat = 30.1% +/- 5.5%). INTERVENTION(S) Participants completed 3 controlled exercise protocols consisting of repetitive box lifting (lifting, carrying, and depositing a 20.4-kg box at a rate of 10 lifts per minute for 10 minutes), seated recovery (10 minutes), and up to 60 minutes of treadmill walking. They wore one of the following: a partial uniform (PART) that included the National Football League (NFL) uniform without a helmet and shoulder pads; a full uniform (FULL) that included the full NFL uniform; or control clothing (CON) that included socks, sneakers, and shorts. Exercise, meals, and hydration status were controlled. MAIN OUTCOME MEASURE(S) We assessed sweat rate, T(re), heart rate, blood pressure, treadmill exercise time, perceptual measurements, plasma volume, plasma lactate, plasma glucose, plasma osmolality, body mass, and fat mass. RESULTS During 19 of 30 experiments, participants halted exercise as a result of volitional exhaustion. Mean sweat rate, T(re), heart rate, and treadmill exercise time during the CON condition were different from those measures during the PART (P range, .04-.001; d range, 0.42-0.92) and FULL (P range, .04-.003; d range, 1.04-1.17) conditions; no differences were detected for perceptual measurements, plasma volume, plasma lactate, plasma glucose, or plasma osmolality. Exhaustion occurred during the FULL and PART conditions at the same T(re) (39.2 degrees C). Systolic and diastolic blood pressures (n = 9) indicated that hypotension developed throughout exercise (all treatments). Compared with the PART condition, the FULL condition resulted in a faster rate of T(re) increase (P < .001, d = 0.79), decreased treadmill exercise time (P = .005, d = 0.48), and fewer completed exercise bouts. Interestingly, T(re) increase was correlated with lean body mass during the FULL condition (R(2) = 0.71, P = .005), and treadmill exercise time was correlated with total fat mass during the CON (R(2) = 0.90, P < .001) and PART (R(2) = 0.69, P = .005) conditions. CONCLUSIONS The FULL and PART conditions resulted in greater physiologic strain than the CON condition. These findings indicated that critical internal temperature and hypotension were concurrent with exhaustion during uncompensable (FULL) or nearly uncompensable (PART) heat stress and that anthropomorphic characteristics influenced heat storage and exercise time to exhaustion.


Journal of Strength and Conditioning Research | 2008

The effects of resistance training on endurance distance running performance among highly trained runners: a systematic review.

Linda M. Yamamoto; Rebecca M. Lopez; Jennifer F. Klau; Douglas J. Casa; William J. Kraemer; Carl M. Maresh

The current perception among highly competitive endurance runners is that concurrent resistance and endurance training (CT) will improve running performance despite the limited research in this area. The purpose of this review was to search the body of scientific literature for original research addressing the effects of CT on distance running performance in highly competitive endurance runners. Specific key words (including running, strength training, performance, and endurance) were used to search relevant databases through April 2007 for literature related to CT. Original research was reviewed using the Physiotherapy Evidence Database (PEDro) scale. Five studies met inclusion criteria: highly trained runners (>or= 30 mile x wk(-1) or >or= 5 d x wk(-1)), CT intervention for a period >or= 6 weeks, performance distance between 3K and 42.2K, and a PEDro scale score >or= 5 (out of 10). Exclusion criteria were prepubertal children and elderly populations. Four of the five studies employed sport-specific, explosive resistance training, whereas one study used traditional heavy weight resistance training. Two of the five studies measured 2.9% improved performance (3K and 5K), and all five studies measured 4.6% improved running economy (RE; range = 3-8.1%). After critically reviewing the literature for the impact of CT on high-level runners, we conclude that resistance training likely has a positive effect on endurance running performance or RE. The short duration and wide range of exercises implemented are of concern, but coaches should not hesitate to implement a well-planned, periodized CT program for their endurance runners.


Journal of The International Society of Sports Nutrition | 2010

Ergogenic effects of betaine supplementation on strength and power performance

Elaine C. Lee; Carl M. Maresh; William J. Kraemer; Linda M. Yamamoto; Disa L. Hatfield; Brooke L. Bailey; Lawrence E. Armstrong; Jeff S. Volek; Brendon P. McDermott; Stuart A. S. Craig

BackgroundWe investigated the ergogenic effects of betaine (B) supplementation on strength and power performance.MethodsTwelve men (mean ± SD age, 21 ± 3 yr; mass, 79.1 ± 10.7 kg) with a minimum of 3 months resistance training completed two 14-day experimental trials separated by a 14-day washout period, in a balanced, randomized, double-blind, repeated measures, crossover design. Prior to and following 14 days of twice daily B or placebo (P) supplementation, subjects completed two consecutive days (D1 and D2) of a standardized high intensity strength/power resistance exercise challenge (REC). Performance included bench, squat, and jump tests.ResultsFollowing 14-days of B supplementation, D1 and D2 bench throw power (1779 ± 90 and 1788 ± 34 W, respectively) and isometric bench press force (2922 ± 297 and 2503 ± 28 N, respectively) were increased (p < 0.05) during REC compared to pre-supplementation values (1534 ± 30 and 1498 ± 29 W, respectively; 2345 ± 64 and 2423 ± 84 N, respectively) and corresponding P values (1374 ± 128 and 1523 ± 39 W; 2175 ± 92 and 2128 ± 56 N, respectively). Compared to pre-supplementation, vertical jump power and isometric squat force increased (p < 0.05) on D1 and D2 following B supplementation. However, there were no differences in jump squat power or the number of bench press or squat repetitions.ConclusionB supplementation increased power, force and maintenance of these measures in selected performance measures, and these were more apparent in the smaller upper-body muscle groups.


Journal of The International Society of Sports Nutrition | 2010

Examination of the efficacy of acute L-alanyl-L-glutamine ingestion during hydration stress in endurance exercise

Jay R. Hoffman; Nicholas A. Ratamess; Jie Kang; Stephanie L. Rashti; Neil Kelly; Adam M Gonzalez; Michael Stec; Steven Anderson; Brooke L. Bailey; Linda M. Yamamoto; Lindsay L. Hom; Brian R. Kupchak; Avery D. Faigenbaum; Carl M. Maresh

BackgroundThe effect of acute L-alanyl-L-glutamine (AG; Sustamine™) ingestion on performance changes and markers of fluid regulation, immune, inflammatory, oxidative stress, and recovery was examined in response to exhaustive endurance exercise, during and in the absence of dehydration.MethodsTen physically active males (20.8 ± 0.6 y; 176.8 ± 7.2 cm; 77.4 ± 10.5 kg; 12.3 ± 4.6% body fat) volunteered to participate in this study. During the first visit (T1) subjects reported to the laboratory in a euhydrated state to provide a baseline (BL) blood draw and perform a maximal exercise test. In the four subsequent randomly ordered trials, subjects dehydrated to -2.5% of their baseline body mass. For T2, subjects achieved their goal weight and were not rehydrated. During T3 - T5, subjects reached their goal weight and then rehydrated to 1.5% of their baseline body mass by drinking either water (T3) or two different doses (T4 and T5) of the AG supplement (0.05 g·kg-1 and 0.2 g·kg-1, respectively). Subjects then exercised at a workload that elicited 75% of their VO2 max on a cycle ergometer. During T2 - T5 blood draws occurred once goal body mass was achieved (DHY), immediately prior to the exercise stress (RHY), and immediately following the exercise protocol (IP). Resting 24 hour (24P) blood samples were also obtained. Blood samples were analyzed for glutamine, potassium, sodium, aldosterone, arginine vasopressin (AVP), C-reactive protein (CRP), interleukin-6 (IL-6), malondialdehyde (MDA), testosterone, cortisol, ACTH, growth hormone and creatine kinase. Statistical evaluation of performance, hormonal and biochemical changes was accomplished using a repeated measures analysis of variance.ResultsGlutamine concentrations for T5 were significantly higher at RHY and IP than T2 - T4. When examining performance changes (difference between T2 - T5 and T1), significantly greater times to exhaustion occurred during T4 (130.2 ± 340.2 sec) and T5 (157.4 ± 263.1 sec) compared to T2 (455.6 ± 245.0 sec). Plasma sodium concentrations were greater (p < 0.05) at RHY and IP for T2 than all other trials. Aldosterone concentrations at RHY and IP were significantly lower than that at BL and DHY. AVP was significantly elevated at DHY, RHY and IP compared to BL measures. No significant differences were observed between trials in CRP, IL-6, MDA, or in any of the other hormonal or biochemical measures.ConclusionResults demonstrate that AG supplementation provided a significant ergogenic benefit by increasing time to exhaustion during a mild hydration stress. This ergogenic effect was likely mediated by an enhanced fluid and electrolyte uptake.


Journal of Strength and Conditioning Research | 2012

Nutritional, physiological, and perceptual responses during a summer ultraendurance cycling event.

Lawrence E. Armstrong; Douglas J. Casa; Holly Emmanuel; Jennifer F. Klau; Elaine C. Lee; Carl M. Maresh; Brendon P. McDermott; Rebecca L. Stearns; Jakob L. Vingren; Jonathan E. Wingo; Keith H. Williamson; Linda M. Yamamoto

Armstrong, LE, Casa, DJ, Emmanuel, H, Ganio, MS, Klau, JF, Lee, EC, Maresh, CM, McDermott, BP, Stearns, RL, Vingren, JL, Wingo, JE, Williamson, KH, and Yamamoto, LM. Nutritional, physiological, and perceptual responses during a summer ultraendurance cycling event. J Strength Cond Res 26(2): 307–318, 2012—Despite the rapid growth of mass participation road cycling, little is known about the dietary, metabolic, and behavioral responses of ultraendurance cyclists. This investigation describes physiological responses, perceptual ratings, energy balance, and macronutrient intake of 42 men (mean ± SD; age, 38 ± 6 years; height, 179.7 ± 7.1 cm; body mass, 85.85 ± 14.79 kg) and 6 women (age, 41 ± 4 years; height, 168.0 ± 2.9 cm; body mass, 67.32 ± 7.21 kg) during a summer 164-km road cycling event. Measurements were recorded 1 day before, and on the Event Day (10.5 hours) at the start (0 km), at 2 aid stations (52 and 97 km), and at the finish line (164 km). The ambient temperature was >39.0° C during the final 2 hours of exercise. The mean finish times for men (9.1 ± 1.2 hours) and women (9.0 ± 0.2 hours) were similar, as were mean gastrointestinal temperature (TGI), 4 hydration biomarkers, and 5 perceptual (e.g., thermal, thirst, pain) ratings. Male cyclists consumed enough fluids on the Event Day (5.91 ± 2.38 L; 49% water) to maintain body mass within 0.76 kg, start to finish, despite a sweat loss of 1.13 ± 0.54 L·h−1 and calculated energy expenditure of 3,115 kcal·10.5·h−1. However, men voluntarily underconsumed food energy (deficit of 2,594 kcal, 10.9 MJ) and specific macronutrients (carbohydrates, 106 ± 48 g; protein, 8 ± 7 g; and sodium, 852 ± 531 mg) between 0530 and 1400 hours. Also, a few men exhibited extreme final values (i.e., urine specific gravity of 1.035–1.038, n = 5; body mass loss >4 kg, n = 2; TGI, 39.4 and 40.2°C). We concluded that these findings provide information regarding energy consumption, macronutrient intake, hydration status, and the physiological stresses that are unique to ultraendurance exercise in a hot environment.


American Journal of Cardiology | 2008

Effects of Carnitine Supplementation on Flow-Mediated Dilation and Vascular Inflammatory Responses to a High-Fat Meal in Healthy Young Adults

Jeff S. Volek; Daniel A. Judelson; Ricardo Silvestre; Linda M. Yamamoto; Barry A. Spiering; Disa L. Hatfield; Jakob L. Vingren; Erin E. Quann; Jeffrey M. Anderson; Carl M. Maresh; William J. Kraemer

Because carnitine has been shown to decrease oxidative stress and improve endothelial cell functioning, we examined the effects of carnitine supplementation on postprandial flow-mediated dilation (FMD) and circulating biomarkers of inflammation and oxidative stress after a high-fat meal. A randomized, double-blind, placebo-controlled, crossover study design was used. Thirty men and women (age 30 +/- 8 year, body mass 72.9 +/- 17.1 kg, body fat 13.0 +/- 6.4%) participated in 2 vascular testing days, each preceded by 3 weeks of supplementation with either 2 g/day of L-Carnitine (L-Carnitine L-Tartrate) or placebo with a 3- to 5-week washout period between trials. Brachial artery FMD in response to 5 minutes of upper arm occlusion and circulating markers of oxidative stress and inflammation were measured in the fasting state and after a standardized high-fat meal. After 3 weeks of supplementation, peak FMD in the fasting state was similar between the carnitine and placebo trials, averaging 6.6%. Peak FMD during the postprandial period decreased to 5.8% at 1.5 hours during placebo and increased to 7.7% during the carnitine trial (n = 30: p = 0.043 for supplement by time interaction effect). This improvement in postprandial vascular function was most dramatic in subjects who showed a decrease in peak FMD in response to the meal (n = 15: p = 0.003 for supplement by time interaction effect). There was a significant increase in postprandial lipemia and plasma interleukin-6 but no effect of supplementation. There were no significant postprandial changes or supplement effects for plasma tumor necrosis factor-alpha and malondialdehyde. In conclusion, consistent with other work showing a beneficial effect of carnitine on vascular function, these findings indicate that carnitine supplementation in healthy individuals improves postprandial FMD after a high-fat meal.


Journal of Strength and Conditioning Research | 2008

Effects of hydration state and resistance exercise on markers of muscle damage.

Linda M. Yamamoto; Daniel A. Judelson; Mark J. Farrell; Elaine C. Lee; Lawrence E. Armstrong; Douglas J. Casa; William J. Kraemer; Jeff S. Volek; Carl M. Maresh

Yamamoto, LM, Judelson, DA, Farrell, MJ, Lee, EC, Armstrong, LE, Casa, DJ, Kraemer, WJ, Volek, JF, and Maresh, CM. Effects of hydration state and resistance exercise on markers of muscle damage. J Strength Cond Res 22(5): 1387-1393, 2008-It is well established that resistance exercise can damage muscle tissue, but the combined effects of hypohydration and resistance exercise on muscle damage are unclear. Two common circulating markers of muscle damage, myoglobin (Mb) and creatine kinase (CK) may be attenuated by fluid ingestion post-exercise. The purpose of this study was to examine the combined effect of resistance exercise and hydration state on muscle damage. Seven healthy resistance-trained males (age = 23 ± 4 years; body mass = 87.8 ± 6.8 kg; body fat = 11.5 ± 5.2%) completed 3 identical resistance exercise bouts (6 sets of up to 10 repetitions of the back squat) in different hydration states: euhydrated (HY0), hypohydrated ∼2.5% body mass (HY2.5), and hypohydrated ∼5.0% body mass (HY5). Subjects achieved desired hydration states via controlled water deprivation, exercise-heat stress, and fluid intake. Both Mb and CK were measured during euhydrated rest (PRE). Mb was also measured immediately post-exercise, 1 hour (+1H) and 2 hours (+2H) post-exercise; CK was measured at 24 and 48 hours post-exercise. Body mass decreased 0.2 ± 0.4%, 2.4 ± 0.4%, and 4.8 ± 0.4% during HY0, HY2.5, and HY5, respectively. Mb concentrations increased significantly (effect size ≥1, p < 0.05) from PRE (2.6 ± 1.1, 3.5 ± 2.8, and 3.2 ± 1.6 nmol·L−1) to +1H (5.3 ± 3.4, 6.8 ± 3.2, and 7.6 ± 2.8 nmol·L−1), and +2H (5.5 ± 3.8, 6.2 ± 3.0, and 7.2 ± 3.0 nmol·L−1) for HY0, HY2.5, and HY5, respectively, but were not significantly different between trials. CK concentrations remained within the normal resting range at all time points. Thus, hypohydration did not enhance muscle damage following the resistance exercise challenge. Despite these results, athletes are encouraged to commence exercise in a euhydrated state to maximize endogenous hormonal, mechanical, and metabolic benefits.


Scandinavian Journal of Medicine & Science in Sports | 2017

Extracellular and cellular Hsp72 differ as biomarkers in acute exercise/environmental stress and recovery

E. C-H. Lee; Colleen X. Munoz; Brendon P. McDermott; K. N. Beasley; Linda M. Yamamoto; L. L. Hom; Douglas J. Casa; Lawrence E. Armstrong; William J. Kraemer; J. M. Anderson; Carl M. Maresh

Stress‐inducible Hsp72 is a potential biomarker to track risk of exertional heat illness during exercise/environmental stress. Characterization of extracellular (eHsp72) vs cellular Hsp72 (iHsp72) responses is required to define the appropriate use of Hsp72 as a reliable biomarker. In each of four repeat visits, participants (n = 6 men, 4 trials; total n = 24): (a) passively dehydrated overnight, (b) exercised (2 h) with no fluid in a hot, humid environmental chamber, (c) rested and rehydrated (1 h), (d) maximally exercised for 0.5 h, and (e) returned after 24 h of at‐home recovery and rehydration. We measured rectal temperature, hydration status (% body mass loss, urine markers, serum osmolality), and Hsp72 (ELISA, flow cytometry. eHsp72 (circulating) and iHsp72 (CD3+ PBMCs) correlated (P < 0.05) with markers of heat, exercise, and dehydration stresses. eHsp72 immediately post‐exercise (>15% above baseline, P < 0.05) decreased back to baseline levels by 1 h post‐exercise, but iHsp72 expression continued to rise and remained elevated 24 h post‐exercise (~2.5‐fold baseline, P < 0.05). These data suggest that in addition to the classic physiological biomarkers of exercise heat stress, using cellular Hsp72 as an indicator of lasting effects of stress into recovery may be most appropriate for determining long‐term effects of stress on risk for exertional heat illness.

Collaboration


Dive into the Linda M. Yamamoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas J. Casa

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elaine C. Lee

Mount Desert Island Biological Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rebecca M. Lopez

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Daniel A. Judelson

California State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge