Duy Le
University of Central Florida
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Duy Le.
Advanced Materials | 2014
John Mann; Quan Ma; Patrick Odenthal; Miguel Isarraraz; Duy Le; Edwin Preciado; David Barroso; Koichi Yamaguchi; Gretel von Son Palacio; Andrew Nguyen; Tai Tran; Michelle Wurch; Ariana Nguyen; Velveth Klee; Sarah Bobek; Dezheng Sun; Tony F. Heinz; Talat S. Rahman; Roland Kawakami; Ludwig Bartels
MoS2(1-x) Se2x single-layer films are prepared using a mixture of organic selenium and sulfur precursors as well as a solid molybdenum source. The direct bandgaps are found to scale nearly linearly with composition in the range of 1.87 eV (pure single-layer MoS2 ) to 1.55 eV (pure single-layer MoSe2 ) permitting straightforward bandgap engineering.
Nano Letters | 2012
Steffen Kahle; Zhitao Deng; N. Malinowski; Charlène Tonnoir; Alicia Forment-Aliaga; Nicha Thontasen; Gordon Rinke; Duy Le; Volodymyr Turkowski; Talat S. Rahman; Stephan Rauschenbach; Markus Ternes; Klaus Kern
The high intrinsic spin and long spin relaxation time of manganese-12-acetate (Mn(12)) makes it an archetypical single molecular magnet. While these characteristics have been measured on bulk samples, questions remain whether the magnetic properties replicate themselves in surface supported isolated molecules, a prerequisite for any application. Here we demonstrate that electrospray ion beam deposition facilitates grafting of intact Mn(12) molecules on metal as well as ultrathin insulating surfaces enabling submolecular resolution imaging by scanning tunneling microscopy. Using scanning tunneling spectroscopy we detect spin excitations from the magnetic ground state of the molecule at an ultrathin boron nitride decoupling layer. Our results are supported by density functional theory based calculations and establish that individual Mn(12) molecules retain their intrinsic spin on a well chosen solid support.
Journal of Physics: Condensed Matter | 2012
Duy Le; Abdelkader Kara; Elsebeth Schröder; Per Hyldgaard; Talat S. Rahman
The physisorption of the nucleobases adenine (A), cytosine (C), guanine (G), thymine (T), and uracil (U) on graphene is studied using several variants of the density functional theory (DFT): the generalized gradient approximation with the inclusion of van der Waals interaction (vdW) based on the TS approach (Tkatchenko and Scheffer 2009 Phys. Rev. Lett. 102 073005) and our simplified version of this approach (here called sTS), the van der Waals density functional vdW-DF (Dion et al 2004 Phys. Rev. Lett. 92 246401) and vdW-DF2 (Lee et al 2010 Phys. Rev. B 82 081101), and DFT-D2 (Grimme 2006 J. Comput. Chem. 27 1787) and DFT-D3 (Grimme et al 2010 J. Chem. Phys. 132 154104) methods. The binding energies of nucleobases on graphene are found to be in the following order: G > A > T > C > U within TS, sTS, vdW-DF, and DFT-D2, and in the following order: G > A > T ~ C > U within DFT-D3 and vdW-DF2. The binding separations are found to be different within different methods and in the following order: DFT-D2 < TS < DFT-D3 ~ vdW-DF2 < vdW-DF. We also comment on the efficiency of combining the DFT-D approach and vdW-DF to study systems with van der Waals interactions.
Langmuir | 2011
Daeho Kim; Dezheng Sun; Wenhao Lu; Zhihai Cheng; Yeming Zhu; Duy Le; Talat S. Rahman; Ludwig Bartels
Molybdenum disulfide (molybdenite) monolayer islands and flakes have been grown on a copper surface at comparatively low temperature and mild conditions through sulfur loading of the substrate using thiophenol (benzenethiol) followed by the evaporation of Mo atoms and annealing. The MoS(2) islands show a regular Moiré pattern in scanning tunneling microscopy, attesting to their atomic ordering and high quality. They are all aligned with the substrate high-symmetry directions providing for rotational-domain-free monolayer growth.
Journal of Physics: Condensed Matter | 2013
Quan Ma; Patrick Odenthal; John Mann; Duy Le; Chen S. Wang; Yeming Zhu; Tianyang Chen; Dezheng Sun; Koichi Yamaguchi; Tai Tran; Michelle Wurch; Jessica L. McKinley; Jonathan Wyrick; KatieMarie Magnone; Tony F. Heinz; Talat S. Rahman; Roland Kawakami; Ludwig Bartels
Sputtering of MoS2 films of single-layer thickness by low-energy argon ions selectively reduces the sulfur content of the material without significant depletion of molybdenum. X-ray photoelectron spectroscopy shows little modification of the Mo 3d states during this process, suggesting the absence of significant reorganization or damage to the overall structure of the MoS2 film. Accompanying ab initio molecular dynamics simulations find clusters of sulfur vacancies in the top plane of single-layer MoS2 to be structurally stable. Measurements of the photoluminescence at temperatures between 175 and 300 K show quenching of almost 80% for an ~10% decrease in sulfur content.
ACS Nano | 2014
Quan Ma; Miguel Isarraraz; Chen S. Wang; Edwin Preciado; Velveth Klee; Sarah Bobek; Koichi Yamaguchi; Emily Li; Patrick Odenthal; Ariana Nguyen; David Barroso; Dezheng Sun; Gretel von Son Palacio; Michael Gomez; Andrew Nguyen; Duy Le; Greg Pawin; John Mann; Tony F. Heinz; Talat S. Rahman; Ludwig Bartels
We demonstrate bandgap tuning of a single-layer MoS2 film on SiO2/Si via substitution of its sulfur atoms by selenium through a process of gentle sputtering, exposure to a selenium precursor, and annealing. We characterize the substitution process both for S/S and S/Se replacement. Photoluminescence and, in the latter case, X-ray photoelectron spectroscopy provide direct evidence of optical band gap shift and selenium incorporation, respectively. We discuss our experimental observations, including the limit of the achievable bandgap shift, in terms of the role of stress in the film as elucidated by computational studies, based on density functional theory. The resultant films are stable in vacuum, but deteriorate under optical excitation in air.
Journal of Physics: Condensed Matter | 2015
Duy Le; Alexei Barinov; Edwin Preciado; Miguel Isarraraz; Iori Tanabe; Takashi Komesu; Conrad Troha; Ludwig Bartels; Talat S. Rahman; Peter A. Dowben
We used angle-resolved photoemission spectroscopy (ARPES) to map out the band structure of single-layer WSe2. The splitting of the top of the valence band because of spin-orbit coupling is 513 ± 10 meV, in general agreement with theoretical predictions and in the same range as that of bulk WSe2. Overall, our density functional theory (DFT) calculations of the band structure are in excellent agreement with the ARPES results. We have verified that the few discrepancies between theory and experiment are not due to the effect of strain. The differences between the DFT-calculated band structure using local density approximation (LDA) and that using the generalized gradient approximation (GGA), for single-layer WSe2, are caused mainly by differences in the respective charge densities.
Journal of Physics: Condensed Matter | 2015
Emilia Ridolfi; Duy Le; Talat S. Rahman; Eduardo R. Mucciolo; Caio H. Lewenkopf
We propose an accurate tight-binding parametrization for the band structure of MoS2 monolayers near the main energy gap. We introduce a generic and straightforward derivation for the band energies equations that could be employed for other monolayer dichalcogenides. A parametrization that includes spin-orbit coupling is also provided. The proposed set of model parameters reproduce both the correct orbital compositions and location of valence and conductance band in comparison with ab initio calculations. The model gives a suitable starting point for realistic large-scale atomistic electronic transport calculations.
Applied Physics Letters | 2014
Takashi Komesu; Duy Le; Xin Zhang; Quan Ma; Eike F. Schwier; Yohei Kojima; Mintian Zheng; Hideaki Iwasawa; Kenya Shimada; M. Taniguchi; Ludwig Bartels; Talat S. Rahman; Peter A. Dowben
The influence of sodium on the band structure of MoS2(0001) and the comparison of the experimental band dispersion with density functional theory show excellent agreement for the occupied states (angle-resolved photoemission) and qualitative agreement for the unoccupied states (inverse photoemission spectroscopy). Na-adsorption leads to charge transfer to the MoS2 surface causing an effect similar to n-type doping of a semiconductor. The MoS2 occupied valence band structure shifts rigidly to greater binding with little change in the occupied state dispersion. Likewise, the unoccupied states shift downward, approaching the Fermi level, yet the amount of the shift for the unoccupied states is greater than that of the occupied states, effectively causing a narrowing of the MoS2 bandgap.
ACS Nano | 2013
Emily A. Lewis; Duy Le; April D. Jewell; Colin J. Murphy; Talat S. Rahman; E. Charles H. Sykes
Competitive adsorption and lateral pressure between surface-bound intermediates are important effects that dictate chemical reactivity. Lateral, or two-dimensional, pressure is known to promote reactivity by lowering energetic barriers and increasing conversion to products. We examined the coadsorption of CO and H2, the two reactants in the industrially important Fischer-Tropsch synthesis, on Co nanoparticles to investigate the effect of two-dimensional pressure. Using scanning tunneling microscopy, we directly visualized the coadsorption of H and CO on Co, and we found that the two adsorbates remain in segregated phases. CO adsorbs on the Co nanoparticles via spillover from the Cu(111) support, and when deposited onto preadsorbed adlayers of H, CO exerts two-dimensional pressure on H, compressing it into a higher-density, energetically less-preferred structure. By depositing excess CO, we found that H on the Co surface is forced to spill over onto the Cu(111) support. Thus, spillover of H from Co onto Cu, where it would not normally reside due to the high activation barrier, is preferred over desorption. We corroborated the mechanism of this spillover-induced displacement by calculating the relevant energetics using density functional theory, which show that the displacement of H from Co is compensated for by the formation of strong CO-Co bonds. These results may have significant ramifications for Fischer-Tropsch synthesis kinetics on Co, as the segregation of CO and H, as well as the displacement of H by CO, limits the interface between the two molecules.