Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ludwig Bartels is active.

Publication


Featured researches published by Ludwig Bartels.


Nature Chemistry | 2010

Tailoring molecular layers at metal surfaces

Ludwig Bartels

The design of networks of organic molecules at metal surfaces, highly attractive for a variety of applications ranging from molecular electronics to gas sensors to protective coatings, has matured to a degree that patterns with multinanometre unit cells and almost any arbitrary geometry can be fabricated. This Review provides an overview of vacuum-deposited organic networks at metal surfaces, using intermolecular hydrogen bonding, metal-atom coordination and in situ polymerization. Recent progress in these areas highlights how the design of surface patterns can benefit from the wealth of information available from solution- and bulk-phase chemistry, while at the same time providing novel insights into the nature of such bonds through the applicability of direct scanning probe imaging at metal surfaces.


Applied Physics Letters | 1997

Controlled vertical manipulation of single CO molecules with the scanning tunneling microscope: A route to chemical contrast

Ludwig Bartels; Gerhard Meyer; Karl-Heinz Rieder

A reliable procedure for controlled vertical transfer of single CO molecules between a Cu(111) surface and a scanning tunneling microscope tip and vice versa is demonstrated. It is shown that with a tip having a single CO molecule at its apex, chemical contrast is achieved allowing distinction of adsorbed CO molecules and oxgen atoms, which look very similar to the bare metal tip.


Advanced Materials | 2014

2-Dimensional Transition Metal Dichalcogenides with Tunable Direct Band Gaps: MoS2(1–x)Se2x Monolayers

John Mann; Quan Ma; Patrick Odenthal; Miguel Isarraraz; Duy Le; Edwin Preciado; David Barroso; Koichi Yamaguchi; Gretel von Son Palacio; Andrew Nguyen; Tai Tran; Michelle Wurch; Ariana Nguyen; Velveth Klee; Sarah Bobek; Dezheng Sun; Tony F. Heinz; Talat S. Rahman; Roland Kawakami; Ludwig Bartels

MoS2(1-x) Se2x single-layer films are prepared using a mixture of organic selenium and sulfur precursors as well as a solid molybdenum source. The direct bandgaps are found to scale nearly linearly with composition in the range of 1.87 eV (pure single-layer MoS2 ) to 1.55 eV (pure single-layer MoSe2 ) permitting straightforward bandgap engineering.


Optics Letters | 2000

Single-shot measurement of terahertz electromagnetic pulses by use of electro-optic sampling

Jie Shan; Aniruddha S. Weling; Ernst Knoesel; Ludwig Bartels; Mischa Bonn; Ajay Nahata; Georg A. Reider; Tony F. Heinz

We demonstrate a simple scheme for capturing the temporal waveforms of a freely propagating terahertz electromagnetic transient in a single shot. The method relies on electro-optic sampling in a noncollinear geometry for the terahertz radiation and the visible probe beam, coupled with multichannel detection. The approach provides time resolution that is comparable to that of conventional electro-optic sampling measurements.


Angewandte Chemie | 2008

A Surface Coordination Network Based on Substrate‐Derived Metal Adatoms with Local Charge Excess

Greg Pawin; Kin L. Wong; Daeho Kim; Dezheng Sun; Ludwig Bartels; Sampyo Hong; Talat S. Rahman; Robert Carp; Michael J. Marsella

In the quest for increased control and tuneability of organic patterns at metal surfaces, more and more systems emerge that rely upon coordination of metal adatoms by organic ligands using endgroups such as carbonitriles, amines, and carboxylic acids. Such systems promise great flexibility in the size and geometry of the surface pattern through choice of the ligand shape, the number and arrangement of ligating endgroups, and the nature of the metal centers. Planar (trigonal or square) arrangements of ligands around metal centers occur most commonly as a result of attractive interactions of the ligands with the substrate. In contrast, in the solution phase planar, and in particular trigonal planar, arrangements are quite rare and generally require ligands whose nature (for example bidentate, pincer shape) forces planarity. Given the relatively short history of the field of surface coordination chemistry, compared to its solution-phase counterpart, it is of great interest to know which information can be gleaned from the latter to predict that for the former. Aspects of coordination chemistry at surfaces that have attracted very little attention to date are the effective oxidation state of the metal atom, which is much more straightforward to define in the solution phase, and the response of the coordination center to the presence of ligands at a surface. This study details an effort at gaining some insight into these two aspects, using a coordination system which is particularly facile to prepare, as it relies on substrate atoms as coordination centers, rather than requiring their separate deposition. In particular, this study describes the formation of a hexagonal network of 9,10-anthracenedicarbonitrile (DCA) on Cu(111) by titration of a nearly square molecular arrangement with copper atoms released from the substrate by annealing. We apply a combination of experimental and theoretical methods and juxtapose their results with the molecular patterns formed in the absence of a substrate. Individual DCA molecules adsorb flat onto Cu(111) with the anthracene moiety parallel to the high-symmetry direction of the substrate. Figure 1 shows an STM image of DCA


Langmuir | 2011

Toward the growth of an aligned single-layer MoS2 film.

Daeho Kim; Dezheng Sun; Wenhao Lu; Zhihai Cheng; Yeming Zhu; Duy Le; Talat S. Rahman; Ludwig Bartels

Molybdenum disulfide (molybdenite) monolayer islands and flakes have been grown on a copper surface at comparatively low temperature and mild conditions through sulfur loading of the substrate using thiophenol (benzenethiol) followed by the evaporation of Mo atoms and annealing. The MoS(2) islands show a regular Moiré pattern in scanning tunneling microscopy, attesting to their atomic ordering and high quality. They are all aligned with the substrate high-symmetry directions providing for rotational-domain-free monolayer growth.


Nano Letters | 2015

Superlinear Composition-Dependent Photocurrent in CVD-Grown Monolayer MoS2(1–x)Se2x Alloy Devices

Velveth Klee; Edwin Preciado; David Barroso; Ariana E. Nguyen; Chris Lee; Kristopher J. Erickson; Mark Triplett; Brandon N. Davis; I-Hsi Lu; Sarah Bobek; Jessica L. McKinley; Joseph Martinez; John Mann; A. Alec Talin; Ludwig Bartels; François Léonard

Transition metal dichalcogenides (TMDs) have emerged as a new class of two-dimensional materials that are promising for electronics and photonics. To date, optoelectronic measurements in these materials have shown the conventional behavior expected from photoconductors such as a linear or sublinear dependence of the photocurrent on light intensity. Here, we report the observation of a new regime of operation where the photocurrent depends superlinearly on light intensity. We use spatially resolved photocurrent measurements on devices consisting of CVD-grown monolayers of TMD alloys spanning MoS2 to MoSe2 to show the photoconductive nature of the photoresponse, with the photocurrent dominated by recombination and field-induced carrier separation in the channel. Time-dependent photoconductivity measurements show the presence of persistent photoconductivity for the S-rich alloys, while photocurrent measurements at fixed wavelength for devices of different alloy compositions show a systematic decrease of the responsivity with increasing Se content associated with increased linearity of the current-voltage characteristics. A model based on the presence of different types of recombination centers is presented to explain the origin of the superlinear dependence on light intensity, which emerges when the nonequilibrium occupancy of initially empty fast recombination centers becomes comparable to that of slow recombination centers.


Semiconductor Science and Technology | 2014

A direct comparison of CVD-grown and exfoliated MoS2 using optical spectroscopy

Gerd Plechinger; John Mann; Edwin Preciado; David Barroso; Ariana Nguyen; Jonathan Eroms; Christian Schüller; Ludwig Bartels; Tobias Korn

MoS2 is a highly interesting material, which exhibits a crossover from an indirect band gap in the bulk crystal to a direct gap for single layers. Here, we perform a direct comparison between large-area MoS2 films grown by chemical vapor deposition (CVD) and MoS2 flakes prepared by mechanical exfoliation from mineral bulk crystal. Raman spectroscopy measurements show differences between the in-plane and out-of-plane phonon mode positions in CVD-grown and exfoliated MoS2. Photoluminescence (PL) mapping reveals large regions in the CVD-grown films that emit strong PL at room-temperature, and low-temperature PL scans demonstrate a large spectral shift of the A exciton emission as a function of position. Polarization-resolved PL measurements under near-resonant excitation conditions show a strong circular polarization of the PL, corresponding to a valley polarization.


Journal of Physics: Condensed Matter | 2013

Controlled argon beam-induced desulfurization of monolayer molybdenum disulfide

Quan Ma; Patrick Odenthal; John Mann; Duy Le; Chen S. Wang; Yeming Zhu; Tianyang Chen; Dezheng Sun; Koichi Yamaguchi; Tai Tran; Michelle Wurch; Jessica L. McKinley; Jonathan Wyrick; KatieMarie Magnone; Tony F. Heinz; Talat S. Rahman; Roland Kawakami; Ludwig Bartels

Sputtering of MoS2 films of single-layer thickness by low-energy argon ions selectively reduces the sulfur content of the material without significant depletion of molybdenum. X-ray photoelectron spectroscopy shows little modification of the Mo 3d states during this process, suggesting the absence of significant reorganization or damage to the overall structure of the MoS2 film. Accompanying ab initio molecular dynamics simulations find clusters of sulfur vacancies in the top plane of single-layer MoS2 to be structurally stable. Measurements of the photoluminescence at temperatures between 175 and 300 K show quenching of almost 80% for an ~10% decrease in sulfur content.


Science | 2007

A Molecule Carrier

Kin L. Wong; Greg Pawin; Ki-Young Kwon; Xing Lin; T. Jiao; U. Solanki; R. H. J. Fawcett; Ludwig Bartels; Sergey Stolbov; Talat S. Rahman

We found that anthraquinone diffuses along a straight line across a flat, highly symmetric Cu(111) surface. It can also reversibly attach one or two CO2 molecules as “cargo” and act as a “molecule carrier,” thereby transforming the diffusive behavior of the CO2 molecules from isotropic to linear. Density functional theory calculations indicated a substrate-mediated attraction of ∼0.12 electron volt (eV). Scanning tunneling microscopy revealed individual steps of the molecular complex on its diffusion pathway, with increases of ∼0.03 and ∼0.02 eV in the diffusion barrier upon attachment of the first and second CO2 molecule, respectively.

Collaboration


Dive into the Ludwig Bartels's collaboration.

Top Co-Authors

Avatar

Dezheng Sun

University of California

View shared research outputs
Top Co-Authors

Avatar

Talat S. Rahman

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ki-Young Kwon

University of California

View shared research outputs
Top Co-Authors

Avatar

Duy Le

University of Central Florida

View shared research outputs
Top Co-Authors

Avatar

Edwin Preciado

University of California

View shared research outputs
Top Co-Authors

Avatar

Kin L. Wong

University of California

View shared research outputs
Top Co-Authors

Avatar

Daeho Kim

University of California

View shared research outputs
Top Co-Authors

Avatar

Greg Pawin

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge