Dezheng Sun
University of California, Riverside
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Dezheng Sun.
Advanced Materials | 2014
John Mann; Quan Ma; Patrick Odenthal; Miguel Isarraraz; Duy Le; Edwin Preciado; David Barroso; Koichi Yamaguchi; Gretel von Son Palacio; Andrew Nguyen; Tai Tran; Michelle Wurch; Ariana Nguyen; Velveth Klee; Sarah Bobek; Dezheng Sun; Tony F. Heinz; Talat S. Rahman; Roland Kawakami; Ludwig Bartels
MoS2(1-x) Se2x single-layer films are prepared using a mixture of organic selenium and sulfur precursors as well as a solid molybdenum source. The direct bandgaps are found to scale nearly linearly with composition in the range of 1.87 eV (pure single-layer MoS2 ) to 1.55 eV (pure single-layer MoSe2 ) permitting straightforward bandgap engineering.
Nano Letters | 2014
Dezheng Sun; Yi Rao; Georg A. Reider; Gugang Chen; Yumeng You; Louis Brézin; Avetik R. Harutyunyan; Tony F. Heinz
Monolayer MoS2 is a direct-gap two-dimensional semiconductor that exhibits strong electron-hole interactions, leading to the formation of stable excitons and trions. Here we report the existence of efficient exciton-exciton annihilation, a four-body interaction, in this material. Exciton-exciton annihilation was identified experimentally in ultrafast transient absorption measurements through the emergence of a decay channel varying quadratically with exciton density. The rate of exciton-exciton annihilation was determined to be (4.3 ± 1.1) × 10(-2) cm(2)/s at room temperature.
Angewandte Chemie | 2008
Greg Pawin; Kin L. Wong; Daeho Kim; Dezheng Sun; Ludwig Bartels; Sampyo Hong; Talat S. Rahman; Robert Carp; Michael J. Marsella
In the quest for increased control and tuneability of organic patterns at metal surfaces, more and more systems emerge that rely upon coordination of metal adatoms by organic ligands using endgroups such as carbonitriles, amines, and carboxylic acids. Such systems promise great flexibility in the size and geometry of the surface pattern through choice of the ligand shape, the number and arrangement of ligating endgroups, and the nature of the metal centers. Planar (trigonal or square) arrangements of ligands around metal centers occur most commonly as a result of attractive interactions of the ligands with the substrate. In contrast, in the solution phase planar, and in particular trigonal planar, arrangements are quite rare and generally require ligands whose nature (for example bidentate, pincer shape) forces planarity. Given the relatively short history of the field of surface coordination chemistry, compared to its solution-phase counterpart, it is of great interest to know which information can be gleaned from the latter to predict that for the former. Aspects of coordination chemistry at surfaces that have attracted very little attention to date are the effective oxidation state of the metal atom, which is much more straightforward to define in the solution phase, and the response of the coordination center to the presence of ligands at a surface. This study details an effort at gaining some insight into these two aspects, using a coordination system which is particularly facile to prepare, as it relies on substrate atoms as coordination centers, rather than requiring their separate deposition. In particular, this study describes the formation of a hexagonal network of 9,10-anthracenedicarbonitrile (DCA) on Cu(111) by titration of a nearly square molecular arrangement with copper atoms released from the substrate by annealing. We apply a combination of experimental and theoretical methods and juxtapose their results with the molecular patterns formed in the absence of a substrate. Individual DCA molecules adsorb flat onto Cu(111) with the anthracene moiety parallel to the high-symmetry direction of the substrate. Figure 1 shows an STM image of DCA
ACS Applied Materials & Interfaces | 2015
Xian Zhang; Dezheng Sun; Yilei Li; Gwan Hyoung Lee; Xu Cui; Daniel Chenet; Yumeng You; Tony F. Heinz; James Hone
Atomically thin materials such as graphene and semiconducting transition metal dichalcogenides (TMDCs) have attracted extensive interest in recent years, motivating investigation into multiple properties. In this work, we demonstrate a refined version of the optothermal Raman technique to measure the thermal transport properties of two TMDC materials, MoS2 and MoSe2, in single-layer (1L) and bilayer (2L) forms. This new version incorporates two crucial improvements over previous implementations. First, we utilize more direct measurements of the optical absorption of the suspended samples under study and find values ∼40% lower than previously assumed. Second, by comparing the response of fully supported and suspended samples using different laser spot sizes, we are able to independently measure the interfacial thermal conductance to the substrate and the lateral thermal conductivity of the supported and suspended materials. The approach is validated by examining the response of a suspended film illuminated in different radial positions. For 1L MoS2 and MoSe2, the room-temperature thermal conductivities are 84 ± 17 and 59 ± 18 W/(m·K), respectively. For 2L MoS2 and MoSe2, we obtain values of 77 ± 25 W and 42 ± 13 W/(m·K). Crucially, the interfacial thermal conductance is found to be of order 0.1-1 MW/m(2) K, substantially smaller than previously assumed, a finding that has important implications for design and modeling of electronic devices.
Langmuir | 2011
Daeho Kim; Dezheng Sun; Wenhao Lu; Zhihai Cheng; Yeming Zhu; Duy Le; Talat S. Rahman; Ludwig Bartels
Molybdenum disulfide (molybdenite) monolayer islands and flakes have been grown on a copper surface at comparatively low temperature and mild conditions through sulfur loading of the substrate using thiophenol (benzenethiol) followed by the evaporation of Mo atoms and annealing. The MoS(2) islands show a regular Moiré pattern in scanning tunneling microscopy, attesting to their atomic ordering and high quality. They are all aligned with the substrate high-symmetry directions providing for rotational-domain-free monolayer growth.
Journal of Physics: Condensed Matter | 2013
Quan Ma; Patrick Odenthal; John Mann; Duy Le; Chen S. Wang; Yeming Zhu; Tianyang Chen; Dezheng Sun; Koichi Yamaguchi; Tai Tran; Michelle Wurch; Jessica L. McKinley; Jonathan Wyrick; KatieMarie Magnone; Tony F. Heinz; Talat S. Rahman; Roland Kawakami; Ludwig Bartels
Sputtering of MoS2 films of single-layer thickness by low-energy argon ions selectively reduces the sulfur content of the material without significant depletion of molybdenum. X-ray photoelectron spectroscopy shows little modification of the Mo 3d states during this process, suggesting the absence of significant reorganization or damage to the overall structure of the MoS2 film. Accompanying ab initio molecular dynamics simulations find clusters of sulfur vacancies in the top plane of single-layer MoS2 to be structurally stable. Measurements of the photoluminescence at temperatures between 175 and 300 K show quenching of almost 80% for an ~10% decrease in sulfur content.
ACS Nano | 2014
Quan Ma; Miguel Isarraraz; Chen S. Wang; Edwin Preciado; Velveth Klee; Sarah Bobek; Koichi Yamaguchi; Emily Li; Patrick Odenthal; Ariana Nguyen; David Barroso; Dezheng Sun; Gretel von Son Palacio; Michael Gomez; Andrew Nguyen; Duy Le; Greg Pawin; John Mann; Tony F. Heinz; Talat S. Rahman; Ludwig Bartels
We demonstrate bandgap tuning of a single-layer MoS2 film on SiO2/Si via substitution of its sulfur atoms by selenium through a process of gentle sputtering, exposure to a selenium precursor, and annealing. We characterize the substitution process both for S/S and S/Se replacement. Photoluminescence and, in the latter case, X-ray photoelectron spectroscopy provide direct evidence of optical band gap shift and selenium incorporation, respectively. We discuss our experimental observations, including the limit of the achievable bandgap shift, in terms of the role of stress in the film as elucidated by computational studies, based on density functional theory. The resultant films are stable in vacuum, but deteriorate under optical excitation in air.
Nature Physics | 2016
Ziliang Ye; Dezheng Sun; Tony F. Heinz
Valleys in momentum space provide a degree of freedom that could be exploited for applications. A demonstration of valley pseudospin control now completes the generation–manipulation–detection paradigm, paving the way for valleytronic devices. The coherent manipulation of spin and pseudospin underlies existing and emerging quantum technologies, including quantum communication and quantum computation1,2. Valley polarization, associated with the occupancy of degenerate, but quantum mechanically distinct valleys in momentum space, closely resembles spin polarization and has been proposed as a pseudospin carrier for the future quantum electronics3,4. Valley exciton polarization has been created in the transition metal dichalcogenide monolayers using excitation by circularly polarized light and has been detected both optically5,6,7 and electrically8. In addition, the existence of coherence in the valley pseudospin has been identified experimentally9. The manipulation of such valley coherence has, however, remained out of reach. Here we demonstrate all-optical control of the valley coherence by means of the pseudomagnetic field associated with the optical Stark effect. Using below-bandgap circularly polarized light, we rotate the valley exciton pseudospin in monolayer WSe2 on the femtosecond timescale. Both the direction and speed of the rotation can be manipulated optically by tuning the dynamic phase of excitons in opposite valleys. This study unveils the possibility of generation, manipulation, and detection of the valley pseudospin by coupling to photons.
Nature Chemistry | 2017
Nicholas R. Monahan; Dezheng Sun; Hiroyuki Tamura; Kristopher W. Williams; Bolei Xu; Yu Zhong; Bharat Kumar; Colin Nuckolls; Avetik R. Harutyunyan; Gugang Chen; Hai-Lung Dai; David Beljonne; Yi Rao; X.-Y. Zhu
The absorption of a photon usually creates a singlet exciton (S1) in molecular systems, but in some cases S1 may split into two triplets (2×T1) in a process called singlet fission. Singlet fission is believed to proceed through the correlated triplet-pair 1(TT) state. Here, we probe the 1(TT) state in crystalline hexacene using time-resolved photoemission and transient absorption spectroscopies. We find a distinctive 1(TT) state, which decays to 2×T1 with a time constant of 270 fs. However, the decay of S1 and the formation of 1(TT) occur on different timescales of 180 fs and <50 fs, respectively. Theoretical analysis suggests that, in addition to an incoherent S1→1(TT) rate process responsible for the 180 fs timescale, S1 may couple coherently to a vibronically excited 1(TT) on ultrafast timescales (<50 fs). The coexistence of coherent and incoherent singlet fission may also reconcile different experimental observations in other acenes.
Nano Letters | 2011
Jonathan Wyrick; Daeho Kim; Dezheng Sun; Zhihai Cheng; Wenhao Lu; Yeming Zhu; Kristian Berland; Yong Su Kim; Eli Rotenberg; Miaomiao Luo; Per Hyldgaard; T. L. Einstein; Ludwig Bartels
Anthraquinone self-assembles on Cu(111) into a giant honeycomb network with exactly three molecules on each side. Here we propose that the exceptional degree of order achieved in this system can be explained as a consequence of the confinement of substrate electrons in the pores, with the pore size tailored so that the confined electrons can adopt a noble-gas-like two-dimensional quasi-atom configuration with two filled shells. Formation of identical pores in a related adsorption system (at different overall periodicity due to the different molecule size) corroborates this concept. A combination of photoemission spectroscopy with density functional theory computations (including van der Waals interactions) of adsorbate-substrate interactions allows quantum mechanical modeling of the spectra of the resultant quasi-atoms and their energetics.