Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Dylan K. Kosma is active.

Publication


Featured researches published by Dylan K. Kosma.


Plant Physiology | 2009

The Impact of Water Deficiency on Leaf Cuticle Lipids of Arabidopsis

Dylan K. Kosma; Brice Bourdenx; Amélie Bernard; Eugene P. Parsons; Shiyou Lü; Jérôme Joubès; Matthew A. Jenks

Arabidopsis (Arabidopsis thaliana) plants subjected to water deficit, sodium chloride (NaCl), or abscisic acid treatments were shown to exhibit a significant increase in the amount of leaf cuticular lipids. These stress treatments led to increases in cuticular wax amount per unit area of 32% to 80%, due primarily to 29% to 98% increases in wax alkanes. Of these treatments, only water deficit increased the total cutin monomer amount (by 65%), whereas both water deficit and NaCl altered the proportional amounts of cutin monomers. Abscisic acid had little effect on cutin composition. Water deficit, but not NaCl, increased leaf cuticle thickness (by 49%). Electron micrographs revealed that both water-deprived and NaCl-treated plants had elevated osmium accumulation in their cuticles. The abundance of cuticle-associated gene transcripts in leaves was altered by all treatments, including those performed in both pot-grown and in vitro conditions. Notably, the abundance of the ECERIFERUM1 gene transcript, predicted to function in alkane synthesis, was highly induced by all treatments, results consistent with the elevated alkane amounts observed in all treatments. Further, this induction of cuticle lipids was associated with reduced cuticle permeability and may be important for plant acclimation to subsequent water-limited conditions. Taken together, these results show that Arabidopsis provides an excellent model system to study the role of the cuticle in plant response to drought and related stresses, and its associated genetic and cellular regulation.


Plant Journal | 2009

Arabidopsis CER8 encodes LONG-CHAIN ACYL-COA SYNTHETASE 1 (LACS1) that has overlapping functions with LACS2 in plant wax and cutin synthesis.

Shiyou Lü; Tao Song; Dylan K. Kosma; Eugene P. Parsons; Owen Rowland; Matthew A. Jenks

Plant cuticle is an extracellular lipid-based matrix of cutin and waxes, which covers aerial organs and protects them from many forms of environmental stress. We report here the characterization of CER8/LACS1, one of nine Arabidopsis long-chain acyl-CoA synthetases thought to activate acyl chains. Mutations in LACS1 reduced the amount of wax in all chemical classes on the stem and leaf, except in the very long-chain fatty acid (VLCFA) class wherein acids longer than 24 carbons (C(24)) were elevated more than 155%. The C(16) cutin monomers on lacs1 were reduced by 37% and 22%, whereas the C(18) monomers were increased by 28% and 20% on stem and leaf, respectively. Amounts of wax and cutin on a lacs1-1 lacs2-3 double mutant were much lower than on either parent, and lacs1-1 lacs2-3 had much higher cuticular permeability than either parent. These additive effects indicate that LACS1 and LACS2 have overlapping functions in both wax and cutin synthesis. We demonstrated that LACS1 has synthetase activity for VLCFAs C(20)-C(30), with highest activity for C(30) acids. LACS1 thus appears to function as a very long-chain acyl-CoA synthetase in wax metabolism. Since C(16) but not C(18) cutin monomers are reduced in lacs1, and C(16) acids are the next most preferred acid (behind C(30)) by LACS1 in our assays, LACS1 also appears to be important for the incorporation of C(16) monomers into cutin polyester. As such, LACS1 defines a functionally novel acyl-CoA synthetase that preferentially modifies both VLCFAs for wax synthesis and long-chain (C(16)) fatty acids for cutin synthesis.


Plant Journal | 2009

Cutin deficiency in the tomato fruit cuticle consistently affects resistance to microbial infection and biomechanical properties, but not transpirational water loss

Tal Isaacson; Dylan K. Kosma; Antonio J. Matas; Gregory J. Buda; Yonghua He; Bingwu Yu; Arika Pravitasari; James D. Batteas; Ruth E. Stark; Matthew A. Jenks; Jocelyn K. C. Rose

Plant cuticles are broadly composed of two major components: polymeric cutin and a mixture of waxes, which infiltrate the cutin matrix and also accumulate on the surface, forming an epicuticular layer. Although cuticles are thought to play a number of important physiological roles, with the most important being to restrict water loss from aerial plant organs, the relative contributions of cutin and waxes to cuticle function are still not well understood. Tomato (Solanum lycopersicum) fruits provide an attractive experimental system to address this question as, unlike other model plants such as Arabidopsis, they have a relatively thick astomatous cuticle, providing a poreless uniform material that is easy to isolate and handle. We identified three tomato mutants, cutin deficient 1 (cd1), cd2 and cd3, the fruit cuticles of which have a dramatic (95-98%) reduction in cutin content and substantially altered, but distinctly different, architectures. This cutin deficiency resulted in an increase in cuticle surface stiffness, and in the proportions of both hydrophilic and multiply bonded polymeric constituents. Furthermore, our data suggested that there is no correlation between the amount of cutin and the permeability of the cuticle to water, but that cutin plays an important role in protecting tissues from microbial infection. The three cd mutations were mapped to different loci, and the cloning of CD2 revealed it to encode a homeodomain protein, which we propose acts as a key regulator of cutin biosynthesis in tomato fruit.


The Plant Cell | 2013

Altered Lipid Composition and Enhanced Nutritional Value of Arabidopsis Leaves following Introduction of an Algal Diacylglycerol Acyltransferase 2

Sanjaya; Rachel Miller; Timothy P. Durrett; Dylan K. Kosma; Todd A. Lydic; Bagyalakshmi Muthan; Abraham J.K. Koo; Yury V. Bukhman; Gavin E. Reid; Gregg A. Howe; John B. Ohlrogge; Christoph Benning

With the aim of improving the energy density of plant vegetative tissues, this work uses algal diacylglycerol acyltransferase type two enzymes to alter acyl carbon partitioning in Arabidopsis vegetative tissues, increasing acyl-CoA–dependent triacylglycerol synthesis and thereby increasing the nutritional value of leaves. Enhancement of acyl-CoA–dependent triacylglycerol (TAG) synthesis in vegetative tissues is widely discussed as a potential avenue to increase the energy density of crops. Here, we report the identification and characterization of Chlamydomonas reinhardtii diacylglycerol acyltransferase type two (DGTT) enzymes and use DGTT2 to alter acyl carbon partitioning in plant vegetative tissues. This enzyme can accept a broad range of acyl-CoA substrates, allowing us to interrogate different acyl pools in transgenic plants. Expression of DGTT2 in Arabidopsis thaliana increased leaf TAG content, with some molecular species containing very-long-chain fatty acids. The acyl compositions of sphingolipids and surface waxes were altered, and cutin was decreased. The increased carbon partitioning into TAGs in the leaves of DGTT2-expressing lines had little effect on transcripts of the sphingolipid/wax/cutin pathway, suggesting that the supply of acyl groups for the assembly of these lipids is not transcriptionally adjusted. Caterpillars of the generalist herbivore Spodoptera exigua reared on transgenic plants gained more weight. Thus, the nutritional value and/or energy density of the transgenic lines was increased by ectopic expression of DGTT2 and acyl groups were diverted from different pools into TAGs, demonstrating the interconnectivity of acyl metabolism in leaves.


Plant Physiology | 2012

Pleiotropic Phenotypes of the sticky peel Mutant Provide New Insight into the Role of CUTIN DEFICIENT2 in Epidermal Cell Function in Tomato

Satya Swathi Nadakuduti; Mike Pollard; Dylan K. Kosma; Charles Allen; John B. Ohlrogge; Cornelius S. Barry

Plant epidermal cells have evolved specialist functions associated with adaptation to stress. These include the synthesis and deposition of specialized metabolites such as waxes and cutin together with flavonoids and anthocyanins, which have important roles in providing a barrier to water loss and protection against UV radiation, respectively. Characterization of the sticky peel (pe) mutant of tomato (Solanum lycopersicum) revealed several phenotypes indicative of a defect in epidermal cell function, including reduced anthocyanin accumulation, a lower density of glandular trichomes, and an associated reduction in trichome-derived terpenes. In addition, pe mutant fruit are glossy and peels have increased elasticity due to a severe reduction in cutin biosynthesis and altered wax deposition. Leaves of the pe mutant are also cutin deficient and the epicuticular waxes contain a lower proportion of long-chain alkanes. Direct measurements of transpiration, together with chlorophyll-leaching assays, indicate increased cuticular permeability of pe leaves. Genetic mapping revealed that the pe locus represents a new allele of CUTIN DEFICIENT2 (CD2), a member of the class IV homeodomain-leucine zipper gene family, previously only associated with cutin deficiency in tomato fruit. CD2 is preferentially expressed in epidermal cells of tomato stems and is a homolog of Arabidopsis (Arabidopsis thaliana) ANTHOCYANINLESS2 (ANL2). Analysis of cuticle composition in leaves of anl2 revealed that cutin accumulates to approximately 60% of the levels observed in wild-type Arabidopsis. Together, these data provide new insight into the role of CD2 and ANL2 in regulating diverse metabolic pathways and in particular, those associated with epidermal cells.


Physiologia Plantarum | 2010

Fruit cuticle lipid composition during development in tomato ripening mutants

Dylan K. Kosma; Eugene P. Parsons; Tal Isaacson; Shiyou Lü; Jocelyn K. C. Rose; Matthew A. Jenks

Recent studies suggest that fruit cuticle is an important contributing factor to tomato (Solanum lycopersicum) fruit shelf life and storability. Moreover, it has been hypothesized that variation in fruit cuticle composition may underlie differences in traits such as fruit resistance to desiccation and microbial infection. To gain a better understanding of cuticle lipid composition diversity during fruit ontogeny and to assess if there are common features that correlate with ripening, we examined developmental changes in fruit cuticle wax and cutin monomer composition of delayed-ripening tomato fruit mutants, ripening inhibitor (rin) and non-ripening (nor) and delayed-ripening landrace Alcobaça. Previous reports show that fruit ripening processes such as climacteric ethylene production, cell wall degradation and color change are significantly delayed, or do not occur, in these lines. In the study presented here, however, we show that fruits from rin, nor and Alcobaça have cuticle lipid compositions that differ significantly from normal fruits of Ailsa Craig (AC) even at very early stages in fruit development, with continuing impacts throughout ripening. Moreover, rin, nor and the Alcobaça lines show quite different wax profiles from AC and each other throughout fruit development. Although cutin monomer composition differed much less than wax composition among the genotypes, all delayed-ripening lines possessed higher relative amounts of C(18) monomers than AC. Together, these results reveal new genetic associations between cuticle and fruit development processes and define valuable genetic resources to further explore the importance of cuticle in fruit shelf life.


Plant Journal | 2014

AtMYB41 activates ectopic suberin synthesis and assembly in multiple plant species and cell types

Dylan K. Kosma; Jhadeswar Murmu; Fakhria M. Razeq; Patricia Santos; Richard Bourgault; Isabel Molina; Owen Rowland

Suberin is a lipid and phenolic cell wall heteropolymer found in the roots and other organs of all vascular plants. Suberin plays a critical role in plant water relations and in protecting plants from biotic and abiotic stresses. Here we describe a transcription factor, AtMYB41 (At4g28110), that can activate the steps necessary for aliphatic suberin synthesis and deposition of cell wall-associated suberin-like lamellae in both Arabidopsis thaliana and Nicotiana benthamiana. Overexpression of AtMYB41 increased the abundance of suberin biosynthetic gene transcripts by orders of magnitude and resulted in the accumulation of up to 22 times more suberin-type than cutin-type aliphatic monomers in leaves. Overexpression of AtMYB41 also resulted in elevated amounts of monolignols in leaves and an increase in the accumulation of phenylpropanoid and lignin biosynthetic gene transcripts. Surprisingly, ultrastructural data indicated that overexpression led to the formation of suberin-like lamellae in both epidermal and mesophyll cells of leaves. We further implicate AtMYB41 in the production of aliphatic suberin under abiotic stress conditions. These results provide insight into the molecular-genetic mechanisms of the biosynthesis and deposition of a ubiquitous cell wall-associated plant structure and will serve as a basis for discovering the transcriptional network behind one of the most abundant lipid-based polymers in nature.


Plant Journal | 2010

Changes in properties of wheat leaf cuticle during interactions with Hessian fly.

Dylan K. Kosma; Jill A. Nemacheck; Matthew A. Jenks; Christie E. Williams

Infestation of wheat by Hessian fly larvae causes a variety of physical and biochemical modifications of the host plant. Changes occur in cuticle permeability, lipid composition and gene transcript abundance, and these responses differ substantially between resistant and susceptible wheat lines. Staining assays revealed that susceptible plants exhibited a generalized increase in leaf sheath epidermal permeability during infestation; whereas, epidermal permeability was only minimally affected in resistant plants. Furthermore, temporal profiling using gas chromatographic methods revealed that changes in cuticle lipid (wax and cutin) composition correlated well with differing levels of epidermal permeability in susceptible and resistant plants. Temporal analysis of cuticle-associated gene mRNA levels, by quantitative real-time PCR, indicated a relationship between transcript abundance and changes in cuticle lipid profiles of resistant and susceptible plants. Results suggest that conserving cuticle integrity via induction of specific wax constituents and maintenance of cutin amounts, determined by the accumulation of cuticle-associated transcripts, could be important components of wheat resistance to Hessian fly larvae.


Plant Physiology | 2009

The Arabidopsis RESURRECTION1 Gene Regulates a Novel Antagonistic Interaction in Plant Defense to Biotrophs and Necrotrophs

Hyung Gon Mang; Kristin Laluk; Eugene P. Parsons; Dylan K. Kosma; Bruce R. Cooper; Hyeong Cheol Park; Synan AbuQamar; Claudia Boccongelli; Saori Miyazaki; Federica Consiglio; Gabriele Chilosi; Hans J. Bohnert; Ray A. Bressan; Tesfaye Mengiste; Matthew A. Jenks

We report a role for the Arabidopsis (Arabidopsis thaliana) RESURRECTION1 (RST1) gene in plant defense. The rst1 mutant exhibits enhanced susceptibility to the biotrophic fungal pathogen Erysiphe cichoracearum but enhanced resistance to the necrotrophic fungal pathogens Botrytis cinerea and Alternaria brassicicola. RST1 encodes a novel protein that localizes to the plasma membrane and is predicted to contain 11 transmembrane domains. Disease responses in rst1 correlate with higher levels of jasmonic acid (JA) and increased basal and B. cinerea-induced expression of the plant defensin PDF1.2 gene but reduced E. cichoracearum-inducible salicylic acid levels and expression of pathogenesis-related genes PR1 and PR2. These results are consistent with rst1s varied resistance and susceptibility to pathogens of different life styles. Cuticular lipids, both cutin monomers and cuticular waxes, on rst1 leaves were significantly elevated, indicating a role for RST1 in the suppression of leaf cuticle lipid synthesis. The rst1 cuticle exhibits normal permeability, however, indicating that the disease responses of rst1 are not due to changes in this cuticle property. Double mutant analysis revealed that the coi1 mutation (causing defective JA signaling) is completely epistatic to rst1, whereas the ein2 mutation (causing defective ethylene signaling) is partially epistatic to rst1, for resistance to B. cinerea. The rst1 mutation thus defines a unique combination of disease responses to biotrophic and necrotrophic fungi in that it antagonizes salicylic acid-dependent defense and enhances JA-mediated defense through a mechanism that also controls cuticle synthesis.


Plant Physiology | 2011

The glossyhead1 Allele of ACC1 Reveals a Principal Role for Multidomain Acetyl-Coenzyme A Carboxylase in the Biosynthesis of Cuticular Waxes by Arabidopsis

Shiyou Lü; Huayan Zhao; Eugene P. Parsons; Changcheng Xu; Dylan K. Kosma; Xiaojing Xu; Daiyin Chao; Gregory T. Lohrey; Dhinoth K. Bangarusamy; Guangchao Wang; Ray A. Bressan; Matthew A. Jenks

A novel mutant of Arabidopsis (Arabidopsis thaliana), having highly glossy inflorescence stems, postgenital fusion in floral organs, and reduced fertility, was isolated from an ethyl methanesulfonate-mutagenized population and designated glossyhead1 (gsd1). The gsd1 locus was mapped to chromosome 1, and the causal gene was identified as a new allele of Acetyl-Coenzyme A Carboxylase1 (ACC1), a gene encoding the main enzyme in cytosolic malonyl-coenzyme A synthesis. This, to our knowledge, is the first mutant allele of ACC1 that does not cause lethality at the seed or early germination stage, allowing for the first time a detailed analysis of ACC1 function in mature tissues. Broad lipid profiling of mature gsd1 organs revealed a primary role for ACC1 in the biosynthesis of the very-long-chain fatty acids (C20:0 or longer) associated with cuticular waxes and triacylglycerols. Unexpectedly, transcriptome analysis revealed that gsd1 has limited impact on any lipid metabolic networks but instead has a large effect on environmental stress-responsive pathways, especially senescence and ethylene synthesis determinants, indicating a possible role for the cytosolic malonyl-coenzyme A-derived lipids in stress response signaling.

Collaboration


Dive into the Dylan K. Kosma's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shiyou Lü

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mike Pollard

Michigan State University

View shared research outputs
Top Co-Authors

Avatar

Patricia Santos

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge