Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Bart Tarbet is active.

Publication


Featured researches published by E. Bart Tarbet.


Antimicrobial Agents and Chemotherapy | 2010

Effects of the Combination of Favipiravir (T-705) and Oseltamivir on Influenza A Virus Infections in Mice

Donald F. Smee; Brett L. Hurst; Min-Hui Wong; Kevin W. Bailey; E. Bart Tarbet; John D. Morrey; Yousuke Furuta

ABSTRACT Favipiravir (T-705 [6-fluoro-3-hydroxy-2-pyrazinecarboxamide]) and oseltamivir were combined to treat influenza virus A/NWS/33 (H1N1), A/Victoria/3/75 (H3N2), and A/Duck/MN/1525/81 (H5N1) infections. T-705 alone inhibited viruses in cell culture at 1.4 to 4.3 μM. Oseltamivir inhibited these three viruses in cells at 3.7, 0.02, and 0.16 μM and in neuraminidase assays at 0.94, 0.46, and 2.31 nM, respectively. Oral treatments were given twice daily to mice for 5 to 7 days starting, generally, 24 h after infection. Survival resulting from 5 days of oseltamivir treatment (0.1 and 0.3 mg/kg/day) was significantly better in combination with 20 mg/kg of body weight/day of T-705 against the H1N1 infection. Treatment of the H3N2 infection required 50 mg/kg/day of oseltamivir for 7 days to achieve 60% protection; 25 mg/kg/day was ineffective. T-705 was ≥70% protective at 50 to 100 mg/kg/day but inactive at 25 mg/kg/day. The combination of inhibitors (25 mg/kg/day each) increased survival to 90%. The H5N1 infection was not benefited by treatment with oseltamivir (≤100 mg/kg/day for 7 days). T-705 was 30 to 70% protective at 25 to 100 mg/kg/day. Survival improved slightly with combination treatments. Increased activity was seen against H5N1 infection by starting treatments 2 h before infection. Oseltamivir was ineffective at ≤40 mg/kg/day. T-705 was 100% protective at 40 and 80 mg/kg/day and inactive at 20 mg/kg/day. Combining ineffective doses (20 mg/kg/day of T-705 and 10 to 40 mg/kg/day of oseltamivir) afforded 60 to 80% protection and improved body weights during infection. Thus, synergistic responses were achieved with low doses of T-705 combined with oseltamivir. These compounds may be viable candidates for combination treatment of human influenza infections.


Antiviral Research | 2010

Combinations of oseltamivir and peramivir for the treatment of influenza A (H1N1) virus infections in cell culture and in mice.

Donald F. Smee; Brett L. Hurst; Min-Hui Wong; E. Bart Tarbet; Yarlagadda S. Babu; Klaus Klumpp; John D. Morrey

Oseltamivir and peramivir are being considered for combination treatment of serious influenza virus infections in humans. Both compounds are influenza virus neuraminidase inhibitors, and since peramivir binds tighter to the enzyme than oseltamivir carboxylate (the active form of oseltamivir), the possibility exists that antagonistic interactions might result when using the two compounds together. To study this possibility, combination chemotherapy experiments were conducted in vitro and in mice infected with influenza A/NWS/33 (H1N1) virus. Treatment of infected MDCK cells was performed with combinations of oseltamivir carboxylate and peramivir at 0.32-100μM for 3 days, followed by virus yield determinations. Additive drug interactions with a narrow region of synergy were found using the MacSynergy method. In a viral neuraminidase assay with combinations of inhibitors at 0.01-10nM, no significant antagonistic or synergistic interactions were observed across the range of concentrations. Infected mice were treated twice daily for 5 days starting 2h prior to virus challenge using drug doses of 0.05-0.4mg/kg/day. Consistent and statistically significant increases in the numbers of survivors were seen when twice daily oral oseltamivir (0.4mg/kg/day) was combined with twice daily intramuscular peramivir (0.1 and 0.2mg/kg/day) compared to single drug treatments. The data demonstrate that combinations of oseltamivir and peramivir perform better than suboptimal doses of each compound alone to treat influenza infections in mice. Treatment with these two compounds should be considered as an option.


Journal of Medicinal Chemistry | 2012

Development of Oseltamivir Phosphonate Congeners as Anti- influenza Agents

Ting Jen R Cheng; Steven Weinheimer; E. Bart Tarbet; Jia Tsrong Jan; Yih Shyun E Cheng; Jiun-Jie Shie; Chun-Lin Chen; Chih An Chen; Wei Che Hsieh; Pei Wei Huang; Wen Hao Lin; Shi Yun Wang; Jim-Min Fang; Oliver Yoa Pu Hu; Chi-Huey Wong

Oseltamivir phosphonic acid (tamiphosphor, 3a), its monoethyl ester (3c), guanidino-tamiphosphor (4a), and its monoethyl ester (4c) are potent inhibitors of influenza neuraminidases. They inhibit the replication of influenza viruses, including the oseltamivir-resistant H275Y strain, at low nanomolar to picomolar levels, and significantly protect mice from infection with lethal doses of influenza viruses when orally administered with 1 mg/kg or higher doses. These compounds are stable in simulated gastric fluid, liver microsomes, and human blood and are largely free from binding to plasma proteins. Pharmacokinetic properties of these inhibitors are thoroughly studied in dogs, rats, and mice. The absolute oral bioavailability of these compounds was lower than 12%. No conversion of monoester 4c to phosphonic acid 4a was observed in rats after intravenous administration, but partial conversion of 4c was observed with oral administration. Advanced formulation may be investigated to develop these new anti-influenza agents for better therapeutic use.


Archives of Virology | 2014

In vitro activity of favipiravir and neuraminidase inhibitor combinations against oseltamivir-sensitive and oseltamivir-resistant pandemic influenza A (H1N1) virus

E. Bart Tarbet; Almut H. Vollmer; Brett L. Hurst; Dale L. Barnard; Yousuke Furuta; Donald F. Smee

Few anti-influenza drugs are licensed in the United States for the prevention and therapy of influenza A and B virus infections. This shortage, coupled with continuously emerging drug resistance, as detected through a global surveillance network, seriously limits our anti-influenza armamentarium. Combination therapy appears to offer several advantages over traditional monotherapy in not only delaying development of resistance but also potentially enhancing single antiviral activity. In the present study, we evaluated the antiviral drug susceptibilities of fourteen pandemic influenza A (H1N1) virus isolates in MDCK cells. In addition, we evaluated favipiravir (T-705), an investigational drug with a broad antiviral spectrum and a unique mode of action, alone and in dual combination with the neuraminidase inhibitors (NAIs) oseltamivir, peramivir, or zanamivir, against oseltamivir-sensitive pandemic influenza A/California/07/2009 (H1N1) and oseltamivir-resistant A/Hong Kong/2369/2009 (H1N1) virus. Mean inhibitory values showed that the tested virus isolates remained sensitive to commonly used antiviral drugs, with the exception of the Hong Kong virus isolate. Drug dose-response curves confirmed complete drug resistance to oseltamivir, partial sensitivity to peramivir, and retained susceptibility to zanamivir and favipiravir against the A/Hong Kong/2369/2009 virus. Three-dimensional analysis of drug interactions using the MacSynergyTM II program indicated an overall synergistic interaction when favipiravir was combined with the NAIs against the oseltamivir-sensitive influenza virus, and an additive effect against the oseltamivir-resistant virus. Although the clinical relevance of these drug combinations remains to be evaluated, results obtained from this study support the use of combination therapy with favipiravir and NAIs for treatment of human influenza virus infections.


Antimicrobial Agents and Chemotherapy | 2012

Exacerbation of Influenza Virus Infections in Mice by Intranasal Treatments and Implications for Evaluation of Antiviral Drugs

Donald F. Smee; Mark von Itzstein; Beenu Bhatt; E. Bart Tarbet

ABSTRACT Compounds lacking oral activity may be delivered intranasally to treat influenza virus infections in mice. However, intranasal treatments greatly enhance the virulence of such virus infections. This can be partially compensated for by giving reduced virus challenge doses. These can be 100- to 1,000-fold lower than infections without such treatment and still cause equivalent mortality. We found that intranasal liquid treatments facilitate virus production (probably through enhanced virus spread) and that lung pneumonia was delayed by only 2 days relative to a 1,000-fold higher virus challenge dose not accompanied by intranasal treatments. In one study, zanamivir was 90 to 100% effective at 10 mg/kg/day by oral, intraperitoneal, and intramuscular routes against influenza A/California/04/2009 (H1N1) virus in mice. However, the same compound administered intranasally at 20 mg/kg/day for 5 days gave no protection from death although the time to death was significantly delayed. A related compound, Neu5Ac2en (N-acetyl-2,3-dehydro-2-deoxyneuraminic acid), was ineffective at 100 mg/kg/day. Intranasal zanamivir and Neu5Ac2en were 70 to 100% protective against influenza A/NWS/33 (H1N1) virus infections at 0.1 to 10 and 30 to 100 mg/kg/day, respectively. Somewhat more difficult to treat was A/Victoria/3/75 virus that required 10 mg/kg/day of zanamivir to achieve full protection. These results illustrate that treatment of influenza virus infections by the intranasal route requires consideration of both virus challenge dose and virus strain in order to avoid compromising the effectiveness of a potentially useful antiviral agent. In addition, the intranasal treatments were shown to facilitate virus replication and promote lung pathology.


PLOS ONE | 2011

Adenovirus-Vectored Drug-Vaccine Duo as a Rapid-Response Tool for Conferring Seamless Protection against Influenza

Jianfeng Zhang; E. Bart Tarbet; Tsungwei Feng; Kent R. Van Kampen; De-chu C. Tang

Few other diseases exert such a huge toll of suffering as influenza. We report here that intranasal (i.n.) administration of E1/E3-defective (ΔE1E3) adenovirus serotype 5 (Ad5) particles rapidly induced an anti-influenza state as a means of prophylactic therapy which persisted for several weeks in mice. By encoding an influenza virus (IFV) hemagglutinin (HA) HA1 domain, an Ad5-HA1 vector conferred rapid protection as a prophylactic drug followed by elicitation of sustained protective immunity as a vaccine for inducing seamless protection against influenza as a drug-vaccine duo (DVD) in a single package. Since Ad5 particles induce a complex web of host responses, which could arrest influenza by activating a specific arm of innate immunity to impede IFV growth in the airway, it is conceivable that this multi-pronged influenza DVD may escape the fate of drug resistance that impairs the current influenza drugs.


Expert Review of Vaccines | 2011

Adenovirus-vectored drug-vaccine duo as a potential driver for conferring mass protection against infectious diseases

Jianfeng Zhang; E. Bart Tarbet; Haroldo Toro; De-chu C. Tang

The disease-fighting power of vaccines has been a public health bonanza credited with the worldwide reduction of mortality and morbidity. The goal to further amplify its power by boosting vaccine coverage requires the development of a new generation of rapid-response vaccines that can be mass produced at low costs and mass administered by nonmedical personnel. The new vaccines also have to be endowed with a higher safety margin than that of conventional vaccines. The nonreplicating adenovirus-vectored vaccine holds promise in boosting vaccine coverage because the vector can be rapidly manufactured in serum-free suspension cells in response to a surge in demand, and noninvasively administered by nasal spray into human subjects in compliance with evolutionary medicine. In contrast to parenteral injection, noninvasive mucosal vaccination minimizes systemic inflammation. Moreover, pre-existing adenovirus immunity does not interfere appreciably with the potency of an adenovirus-vectored nasal vaccine. Nasal administration of adenovirus vectors encoding pathogen antigens is not only fear-free and painless, but also confers rapid and sustained protection against mucosal pathogens as a drug–vaccine duo since adenovirus particles alone without transgene expression can induce an anti-influenza state in the airway. In addition to human vaccination, animals can also be mass immunized by this class of vectored vaccines.


Antiviral Research | 2012

Treatment of Oseltamivir-Resistant Influenza A (H1N1) Virus Infections in Mice With Antiviral Agents

Donald F. Smee; Justin G. Julander; E. Bart Tarbet; Matthew Gross; Jack Nguyen

Influenza A/Mississippi/03/2001 (H1N1) and A/Hong Kong/2369/2009 (H1N1) viruses containing the neuraminidase gene mutation H275Y (conferring resistance to oseltamivir) were adapted to mice and evaluated for suitability as models for lethal infection and antiviral treatment. The viral neuraminidases were resistant to peramivir and oseltamivir carboxylate but sensitive to zanamivir. Similar pattern of antiviral activity were seen in MDCK cell assays. Lethal infections were achieved in mice with the two viruses. Oral oseltamivir at 100 and 300mg/kg/day bid for 5day starting at -2h gave 30% and 60% protection from death, respectively, due to the A/Mississippi/03/2001 infection. Intraperitoneal treatments with zanamivir at 30 and 100mg/kg/day starting at -2h gave 60% and 90% protection, respectively. Neither compound at <300mg/kg/day protected mice when treatments began at +24h. Amantadine was effective at 10, 30, and 100mg/kg/day, rimantadine was protective at 10 and 30mg/kg/day (highest dose tested), and ribavirin was active at 30 and 75mg/kg/day, with survival ranging from 60-100% for oral treatments initiated at -2h. For treatments begun at +24h, amantadine was protective at 30 and 100mg/kg/day, rimantadine showed efficacy at 10 and 30mg/kg/day, and ribavirin was active at 75mg/kg/day, with 60-100% survival per group. In the A/Hong Kong/2369/2009 infection, oral oseltamivir at 100 and 300mg/kg/day starting at -2h gave 50% and 70% protection from death, respectively. These infection models will be useful to study newly discovered anti-influenza virus agents and to evaluate compounds in combination.


ACS Applied Materials & Interfaces | 2016

Nanoparticle Assembly and Gelatin Binding Mediated by Triple Helical Collagen Mimetic Peptide.

Boi Hoa San; Yang Li; E. Bart Tarbet; S. Michael Yu

Peptide-conjugated nanoparticles (NPs) have promising potential for applications in biosensing, diagnosis, and therapeutics because of their appropriate size, unique self-assembly, and specific substrate-binding properties. However, controlled assembly and selective target binding are difficult to achieve with simple peptides on NP surfaces because high surface energy makes NPs prone to self-aggregate and adhere nonspecifically. Here, we report the self-assembly and gelatin binding properties of collagen mimetic peptide (CMP) conjugated gold NPs (CMP-NPs). We show that the orientation of CMPs displayed on the NP surface can control NP assembly either by promoting or hindering triple helical folding between CMPs of neighboring NPs. We also show that CMP-NPs can specifically bind to denatured collagen by forming triple-helical hybrids between denatured collagen strands and CMPs, demonstrating their potential use for detection and selective removal of gelatin from protein mixtures. CMP conjugated NPs offer a simple and effective method for NP assembly and for targeting denatured collagens with high specificity. Therefore, they may lead to new types of functional nanomaterials for detection and study of denatured collagen associated with diseases characterized by high levels of collagen degradation.


Antiviral Research | 2011

Evaluation of imiquimod for topical treatment of vaccinia virus cutaneous infections in immunosuppressed hairless mice.

E. Bart Tarbet; Deanna Larson; Bentley J. Anderson; Kevin W. Bailey; Min-Hui Wong; Donald F. Smee

Imiquimod is an immune response modifier prescribed as a topical medication for a number of viral and neoplastic conditions. We evaluated the antiviral activity of imiquimod against vaccinia virus (WR strain) cutaneous infections in immunosuppressed (with cyclophosphamide) hairless mice when administered after virus exposure. Primary lesions progressed in severity, satellite lesions developed, and infection eventually killed the mice. Once daily topical treatment with 1% imiquimod cream for 3, 4, or 5 days were compared to twice daily topical treatment with 1% cidofovir cream for 7 days. Survival time of mice in all treated groups was significantly prolonged compared to placebo controls. The mean day of death for the placebo group, 3-day imiquimod, 4-day imiquimod, 5-day imiquimod, and cidofovir groups were 15.5, 20.0, 20.5, 19.5, and 20.5 days post-infection, respectively. All treatment groups showed significant reductions in primary lesion size and in the number of satellite lesions. The cidofovir and 4-day imiquimod treatments delayed the appearance of lung virus titers by 3 and 6 days, respectively, although cutaneous lesion and snout virus titers were not as affected by treatment. Benefits in survival and lesion reduction were observed when imiquimod treatment was delayed from 24, 48, and 72 h post-infection. However, increasing the treatment dose of imiquimod from 1% to 5% led to a significant decrease in antiviral efficacy. These results demonstrate the protective effects of topically administered imiquimod against a disseminated vaccinia virus infection in this mouse model.

Collaboration


Dive into the E. Bart Tarbet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

De-chu C. Tang

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge