Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where E. Cascone is active.

Publication


Featured researches published by E. Cascone.


Proceedings of SPIE | 2004

OmegaCAM: wide-field imaging with fine spatial resolution

K. Kuijken; Ralf Bender; E. Cappellaro; Bernard Muschielok; Andrea Baruffolo; E. Cascone; Hans-Joachim Hess; Olaf Iwert; H. Nicklas; Klaus Reif; E Valentijn; Dietrich Baade; Kornelis Begeman; Alessandro Bortolussi; Danny Boxhoorn; Fabrice Christen; E. Deul; Laura Greggio; Reiner Harke; Reinhold Haefner; Ulrich Hopp; Ivica Ilijevski; Guenther Klink; Helmut Kravcar; Carlo E. Magagna; Wolfgang Mitsch; P. K. Mueller; Henning Poschmann; Roeland Rengelink; Walter Wellem

OmegaCAM is the wide-field camera for the VLT Survey Telescope being completed for ESOs Paranal observatory. The instrument, as well as the telescope, have been designed for very good, natural seeing-limited image quality over a 1 degree field. At the heart of the project are a square-foot photometric shutter, a 12-filter storage/exchange mechanism, a 16k x 16k CCD detector mosaic, and plenty of software for instrument control and data handling, analysis and archiving.


Astronomy and Astrophysics | 2015

Supernova rates from the SUDARE VST-OmegaCAM search: I. Rates per unit volume

Enrico Cappellaro; M. T. Botticella; Giuliano Pignata; A. Grado; Laura Greggio; L. Limatola; M. Vaccari; Andrea Baruffolo; Stefano Benetti; F. Bufano; M. Capaccioli; E. Cascone; G. Covone; D. De Cicco; S. Falocco; M. Della Valle; M. J. Jarvis; L. Marchetti; N. R. Napolitano; M. Paolillo; Andrea Pastorello; M. Radovich; Pietro Schipani; S. Spiro; L. Tomasella; M. Turatto

Aims. We describe the observing strategy, data reduction tools, and early results of a supernova (SN) search project, named SUDARE, conducted with the ESO VST telescope, which is aimed at measuring the rate of the different types of SNe in the redshift range 0.2 < z < 0.8. Methods. The search was performed in two of the best studied extragalactic fields, CDFS and COSMOS, for which a wealth of ancillary data are available in the literature or in public archives. We developed a pipeline for the data reduction and rapid identification of transients. As a result of the frequent monitoring of the two selected fields, we obtained light curve and colour information for the transients sources that were used to select and classify SNe by means of an especially developed tool. To accurately characterise the surveyed stellar population, we exploit public data and our own observations to measure the galaxy photometric redshifts and rest frame colours. Results. We obtained a final sample of 117 SNe, most of which are SN Ia (57%) with the remaining ones being core collapse events, of which 44% are type II, 22% type IIn and 34% type Ib/c. To link the transients, we built a catalogue of ~1.3 × 105 galaxies in the redshift range 0 < z ≤ 1, with a limiting magnitude KAB = 23.5 mag. We measured the SN rate per unit volume for SN Ia and core collapse SNe in different bins of redshifts. The values are consistent with other measurements from the literature. Conclusions. The dispersion of the rate measurements for SNe-Ia is comparable to the scatter of the theoretical tracks for single degenerate (SD) and double degenerate (DD) binary systems models, therefore it is not possible to disentangle among the two different progenitor scenarios. However, among the three tested models (SD and the two flavours of DD that either have a steep DDC or a wide DDW delay time distribution), the SD appears to give a better fit across the whole redshift range, whereas the DDC better matches the steep rise up to redshift ~1.2. The DDW instead appears to be less favoured. Unlike recent claims, the core collapse SN rate is fully consistent with the prediction that is based on recent estimates of star formation history and standard progenitor mass range.


The Messenger | 2002

OmegaCAM: the 16k×16k CCD camera for the VLT survey telescope

K. Kuijken; Ralf Bender; E. Cappellaro; Bernard Muschielok; Andrea Baruffolo; E. Cascone; Olaf Iwert; Wolfgang Mitsch; H. Nicklas; E Valentijn; Dietrich Baade; Kornelis Begeman; Alessandro Bortolussi; Danny Boxhoorn; Fabrice Christen; E. Deul; C. Geimer; Laura Greggio; Reiner Harke; R. Häfner; G. Hess; H.-J. Hess; Ulrich Hopp; Ivica Ilijevski; Guenther Klink; Helmut Kravcar; J. L. Lizon; Carlo E. Magagna; Ph. Müller; R. Niemeczek

OmegaCAM, a 16k×16k-pixel wide field optical camera, and the VLT Survey Telescope (VST) that is to host it, will constitute a major sky surveying machine that becomes operational in 2004 at ESO’s Paranal Observatory. It maps one square degree of sky with 0.21 arcsec sized pixels. Both individual programs, including monitoring programs, and large sky survey programs are planned. Here we present the integrated design of the VST-OmegaCAM survey machine, including the hardware (large filters and shutter, cf(4836-34)), the VLT compliant control software (cf(4848-10)) and the strongly procedurized observing and calibration strategies. The strict data taking procedures facilitate pipeline data reduction procedures both for the calibration and the science data. In turn, the strongly procedurized data handling allows European-wide federations of data-products. The ASTRO-WISE consortium aims to provide a survey system that makes this possible. On-the-fly re-processing of archival data on the request of individual users with their own plug-ins or newly derived calibrations sets are facilitated in an internationally distributed system. Compared to the classical more static wide-field image archives the newly designed system is characterized by a much more dynamical type of archiving.


Astronomical Telescopes and Instrumentation | 2000

VIMOS and NIRMOS multi-object spectrographs for the ESO VLT

Oliver LeFevre; Michel Saisse; Dario Mancini; G. Vettolani; D. Maccagni; Jean P. Picat; Y. Mellier; A. Mazure; Jean Gabriel Cuby; Bernard Delabre; Bianca Garilli; Lucien Hill; Eric Prieto; Clothaire Voet; Luc Arnold; Sylvie Brau-Nogue; E. Cascone; Paolo Conconi; Gert Finger; Gotthard Huster; Andree Laloge; Christian Lucuix; E. Mattaini; Pietro Schipani; G. Waultier; Filippo Maria Zerbi; Gerardo Avila; James W. Beletic; Sandro D'Odorico; Alan F. M. Moorwood

The VIRMOS consortium of French and Italian Institutes is manufacturing 2 wide field imaging multi-object spectrographs for the European Southern Observatory Very Large Telescope, with emphasis on the ability to carry over spectroscopic surveys of large numbers of sources. The Visible Multi-Object Spectrograph, VIMOS, is covering the 0.37 to 1 micron wavelength domain, with a full field of view of 4 by 7 by 8 arcmin2 in imaging and MOS mode. The Near IR Multi-Object Spectrograph, NIRMOS, is covering the 0.9 to 1.8 microns wavelength range, with afield of view 4 by 6 by 8 arcmin2 in MOS mode. The spectral resolution for both instrument scan reach up to R equals 5000 for a 0.5 arcsec wide slit. Multi-slit masks are produced by a dedicated Mask Manufacturing Machine cutting through thin Invar sheets and capable of producing 4 slit masks approximately 300 by 300 mm each with approximately slits 5.7 mm long in less than one hour. Integral field spectroscopy is made possible in VIMOS by switching in the beam specially build masks fed by 6400 fibers coming form a 54 by 54 arcsec2 integral field head with a 80 by 80 array of silica micro-lenses. NIRMOS has a similar IFS unit with a field of 30 by 30 arcmin2. These instruments are designed to offer very large multiplexing capabilities. In MOS mode, about 1000 objects can be observed simultaneously with VIMOS, with a S/N equals 10 obtained on galaxies with I equals 24 in one hour, and approximately 200 objects can be observed simultaneously with NIRMOS, with a S/N equals 10 obtained don galaxies with J equals 22, H equals 20.6 in 1h at Req equals 200. We present here the status of VIMOS, currently under final integration, with expected first light in the summer 2000, together with the final design of NIRMOS presented at the Final Design Review. The VLT-VIRMOS deep redshift survey of more with the final design of NIRMOS presented at the Final Design Review. The VLT-VIRMOS deep redshift survey of more than 150000 galaxies over the redshift range 0 < z < 5 will be undertaken based on 120 guaranteed nights awarded to the project.


Astronomy and Astrophysics | 2015

SUDARE-VOICE variability-selection of active galaxies in the Chandra Deep Field South and the SERVS/SWIRE region

S. Falocco; M. Paolillo; G. Covone; D. De Cicco; G. Longo; A. Grado; L. Limatola; M. Vaccari; M. T. Botticella; Giuliano Pignata; Enrico Cappellaro; Dario Trevese; F. Vagnetti; M. Salvato; M. Radovich; Li-Ting Hsu; M. Capaccioli; N. R. Napolitano; W. N. Brandt; Andrea Baruffolo; E. Cascone; Pietro Schipani

Context. One of the most peculiar characteristics of Active Galactic Nuclei (AGN) is their variability over all wavelengths. This property has been used in the past to select AGN samples and is foreseen to be one of the detection techniques applied in future multi-epoch surveys, complementing photometric and spectroscopic methods. Aims. In this paper, we aim to construct and characterise an AGN sample using a multi-epoch dataset in the r band from the SUDAREVOICE survey. Methods. Our work makes use of the VST monitoring program of an area surrounding the Chandra Deep Field South to select variable sources. We use data spanning a six month period over an area of 2 square degrees, to identify AGN based on their photometric variability. Results. The selected sample includes 175 AGN candidates with magnitude r < 23 mag. We distinguish different classes of variable sources through their lightcurves, as well as X-ray, spectr oscopic, SED, optical and IR information overlapping with our survey. Conclusions. We find that 12% of the sample (21/175) is represented by SN. Of the remaining sources, 4% (6/154) are stars, while 66% (102/154) are likely AGNs based on the available diagnostics. We estimate an upper limit to the contamination of the variabili ty selected AGN sample≃ 34%, but we point out that restricting the analysis to the sources with available multi-wavelength ancillary information, the purity of our sample is close to 80% (102 AGN out of 128 non-SN sources with multi-wavelength diagnostics). Our work thus confirms the effi ciency of the variability selection method in agreement with our previous work on the COSMOS field; in addition we show that the variability approach is roughly consistent with the infrared selection.


Astronomical Telescopes and Instrumentation | 1998

VIRMOS: visible and infrared multiobject spectrographs for the VLT

Oliver LeFevre; G. Vettolani; D. Maccagni; Dario Mancini; Jean P. Picat; Y. Mellier; A. Mazure; Michel Saisse; Jean Gabriel Cuby; Bernard Delabre; Bianca Garilli; Lucien Hill; Eric Prieto; Luc Arnold; Paolo Conconi; E. Cascone; E. Mattaini; Clothaire Voet

We present the current design of the VIsible Multi-Object Spectrograph (VIMOS) and the Near InfraRed Multi-Object Spectrograph (NIRMOS) for the European Southern Observatory Very Large Telescope. The basic scientific requirement is to conduct very deep redshift surveys of large quantities of objects, in a minimum number of nights. The technical specifications are to allow for a large multiplex gain over a wide field, and a high efficiency of the optical train, over the 0.37 to 1.8 micrometer domain. The baseline technical concept is built around 4 channels, covering 4 X 7 X 8 arcmin2 for VIMOS and 4 X 7 X 7 arcmin2 for NIRMOS. Each channel is an imaging spectrograph with a large field adaptation lens, a collimator, grisms or filters, and a F/1.8 camera, coupled to a 2048 X 4096 pixels CCD for VIMOS, and a 20482 HgCdTe Rockwell array for NIRMOS. The unique multiplex gain allows to obtain spectra of up to 840 object simultaneously with VIMOS, and up to 170 with NIRMOS (10 arcsec slits). An integral field spectroscopy mode with more than 6400 fibers coupled to micro-lenses will be available for VIMOS, covering a 1 X 1 arcmin2 field. The VLT-VIRMOS survey of more than 150,000 galaxies is planned down to magnitudes IAB equals 24, coupled to an ultra deep probe to IAB equals 26.


Proceedings of SPIE | 2014

Preparing for the phase B of the E-ELT MCAO module project

Emiliano Diolaiti; Carmelo Arcidiacono; Giovanni Bregoli; R. C. Butler; Matteo Lombini; Laura Schreiber; Andrea Baruffolo; Alastair Basden; M. Bellazzini; E. Cascone; P. Ciliegi; Fausto Cortecchia; Giuseppe Cosentino; Vincenzo De Caprio; Adriano De Rosa; N. A. Dipper; Simone Esposito; Italo Foppiani; E. Giro; G. Morgante; Richard M. Myers; Fabien Patru; Roberto Ragazzoni; Armando Riccardi; Marco Riva; Filippo Maria Zerbi; Mark Casali; Bernard Delabre; Norbert Hubin; Florian Kerber

The Multi-Conjugate Adaptive Optics module for the European Extremely Large Telescope has been designed to achieve uniform compensation of the atmospheric turbulence effects on a wide field of view in the near infrared. The design realized in the Phase A of the project is undergoing major revision in order to define a robust baseline in view of the next phases of the project. An overview of the on-going activities is presented.


Publications of the Astronomical Society of the Pacific | 2001

The VLT‐VIRMOS Mask Manufacturing Unit

G. Conti; E. Mattaini; L. Chiappetti; D. Maccagni; E. Sant’Ambrogio; D. Bottini; B. Garilli; O. Le Fèvre; Michel Saisse; Clothaire Voet; Oreste Caputi; E. Cascone; D. Mancini; Guido Mancini; F. Perrotta; Pietro Schipani; G. Vettolani

ABSTRACT The VIRMOS Consortium had the task to design and manufacture two spectrographs for the ESO Very Large Telescope, VIMOS (Visible Multi‐Object Spectrograph) and NIRMOS (Near Infrared Multi‐Object Spectrograph). This paper describes how the mask manufacturing unit (MMU), which cuts the slit masks to be used with both instruments, meets the scientific requirements and manages the storage and the insertion of the masks into the instrument. The components and the software of the two main parts of the MMU, the mask manufacturing machine and the mask handling system, are illustrated together with the mask material and with the slit properties. Slit positioning is accurate within 15 μm, equivalent to 0 \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\r...


Optical Design and Engineering IV | 2011

Optical Design and Test of the BIGRE Based IFS of SPHERE

R. U. Claudi; E. Giro; U. Anselmi; D. Mesa; J. Antichi; R. Gratton; S. Desidera; V. De Caprio; L. Lessio; S. Scuderi; P. Bruno; D. Fantinel; Bernardo Salasnich; E. Cascone; J.-L. Beuzit; Kjetil Dohlen; F. Wildi; Pascal Puget; M. Kasper; Norbert Hubin

During the last months IFS, is the Integral Field Spectrograph for SPHERE, devoted to the search of exoplanets has been integrated in the clean room of Padova Observatory. The design of IFS is based on a new concept of double microlens array sampling the focal plane. This device named BIGRE consists of a system made of two microlens arrays with different focal lengths and thickness equal to the sum of them and precisely aligned each other. Moreover a mask has been deposited on the first array to produce a field stop for each lenslet, and a second mask is located on the intermediate pupil of the IFS to provide an aperture stop. After characterization of a previous prototype of BIGRE in the visible range, now the first measurements of the performances of the device in the IR range have been obtained on the instrument that will be mounted at the VLT telescope. These tests confirmed that specifications and properties of the prototype are met by state of the art on optics microlens manufacturing.


Proceedings of SPIE | 2006

The integral field spectrograph of SPHERE: the planet finder for VLT

R. U. Claudi; M. Turatto; J. Antichi; R. Gratton; S. Scuderi; E. Cascone; D. Mesa; S. Desidera; Andrea Baruffolo; Alessandro Berton; Paolo Bagnara; E. Giro; P. Bruno; D. Fantinel; J.-L. Beuzit; P. Puget; Kjetil Dohlen

SPHERE is an instrument designed and built by a consortium of French, German, Italian, Swiss and Dutch institutes in collaboration with ESO. The project is currently in its Phase B. The main goal of SPHERE is to gain at least one order of magnitude with respect to the present VLT AO facility (NACO) in the direct detection of faint objects very close to a bright star, especially giant extrasolar planets. Apart from a high Strehl ratio, the instrument will be designed to reduce the scattered light of the central bright star and subtract the residual speckle halo. Sophisticated post-AO capabilities are needed to provide maximum detectivity and possibly physical data on the putative planets. The Integral Field Spectrograph (IFS), one of the three scientific channels foreseen in the SPHERE design, is a very low resolution spectrograph (R~20) which works in the near IR (0.95-1.35 μm), an ideal wavelength range for the ground based detection of planetary features. Its goal is to suppress speckle to a contrast of 107, with a goal of 108, and at the same time provide spectral information in a field of view of about 1.5 × 1.5 arcsecs2 in proximity of the target star. In this paper we describe the overall IFS design concept.

Collaboration


Dive into the E. Cascone's collaboration.

Researchain Logo
Decentralizing Knowledge