E.-M. Sankila
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E.-M. Sankila.
Journal of Medical Genetics | 2006
Frans P.M. Cremers; William J. Kimberling; Maigi Külm; Arjan P.M. de Brouwer; Erwin van Wijk; Heleen Te Brinke; C.W.R.J. Cremers; Lies H. Hoefsloot; Sandro Banfi; Francesca Simonelli; Johannes Fleischhauer; Wolfgang Berger; Phil M. Kelley; Elene Haralambous; Maria Bitner-Glindzicz; Andrew R. Webster; Zubin Saihan; Elfride De Baere; Bart P. Leroy; Giuliana Silvestri; Gareth J. McKay; Robert K. Koenekoop; José M. Millán; Thomas Rosenberg; Tarja Joensuu; E.-M. Sankila; Dominique Weil; Michael D. Weston; Bernd Wissinger; Hannie Kremer
Background: Usher syndrome, a combination of retinitis pigmentosa (RP) and sensorineural hearing loss with or without vestibular dysfunction, displays a high degree of clinical and genetic heterogeneity. Three clinical subtypes can be distinguished, based on the age of onset and severity of the hearing impairment, and the presence or absence of vestibular abnormalities. Thus far, eight genes have been implicated in the syndrome, together comprising 347 protein-coding exons. Methods: To improve DNA diagnostics for patients with Usher syndrome, we developed a genotyping microarray based on the arrayed primer extension (APEX) method. Allele-specific oligonucleotides corresponding to all 298 Usher syndrome-associated sequence variants known to date, 76 of which are novel, were arrayed. Results: Approximately half of these variants were validated using original patient DNAs, which yielded an accuracy of >98%. The efficiency of the Usher genotyping microarray was tested using DNAs from 370 unrelated European and American patients with Usher syndrome. Sequence variants were identified in 64/140 (46%) patients with Usher syndrome type I, 45/189 (24%) patients with Usher syndrome type II, 6/21 (29%) patients with Usher syndrome type III and 6/20 (30%) patients with atypical Usher syndrome. The chip also identified two novel sequence variants, c.400C>T (p.R134X) in PCDH15 and c.1606T>C (p.C536S) in USH2A. Conclusion: The Usher genotyping microarray is a versatile and affordable screening tool for Usher syndrome. Its efficiency will improve with the addition of novel sequence variants with minimal extra costs, making it a very useful first-pass screening tool.
Journal of Medical Genetics | 2006
Reetta Jalkanen; Mäntyjärvi M; Tobias R; Isosomppi J; E.-M. Sankila; Tiina Alitalo; Bech-Hansen Nt
Background: X linked cone-rod dystrophy (CORDX) is a recessive retinal disease characterised by progressive dysfunction of photoreceptors. It is genetically heterogeneous, showing linkage to three X chromosomal loci. CORDX1 is caused by mutations in the RPGR gene (Xp21.1), CORDX2 is located on Xq27.2-28, and we recently localised CORDX3 to Xp11.4-q13.1. We aimed to identify the causative gene behind the CORDX3 phenotype. Methods: All 48 exons of the CACNA1F gene were screened for mutations by DNA sequencing. RNA from cultured lymphoblasts and peripheral blood activated T lymphocytes was analysed by RT-PCR and sequencing. Results: A novel CACNA1F mutation, IVS28-1 GCGTC>TGG, in the splice acceptor site of intron 28 was identified. Messenger RNA studies indicated that the identified mutation leads to altered splicing of the CACNA1F transcript. Aberrant splice variants are predicted to result in premature termination and deletions of the encoded protein, Cav1.4 α1 subunit. Conclusion:CACNA1F mutations cause the retinal disorder, incomplete congenital stationary night blindness (CSNB2), although mutations have also been detected in patients with divergent diagnoses. Our results indicate that yet another phenotype, CORDX3, is caused by a mutation in CACNA1F. Clinically, CORDX3 shares some features with CSNB2 but is distinguishable from CSNB2 in that it is progressive, can begin in adulthood, has no nystagmus or hyperopic refraction, has only low grade astigmatism, and in dark adaptation lacks cone threshold and has small or no elevation of rod threshold. Considering all features, CORDX3 is more similar to other X chromosomal cone-rod dystrophies than to CSNB2.
Journal of Biological Chemistry | 2009
Guillian Tian; Yun Zhou; Dagmar Hajkova; Masaru Miyagi; Astra Dinculescu; William W. Hauswirth; Krzysztof Palczewski; Ruishuang Geng; Kumar N. Alagramam; J. Isosomppi; E.-M. Sankila; John G. Flannery; Yoshikazu Imanishi
Clarin-1 is the protein product encoded by the gene mutated in Usher syndrome III. Although the molecular function of clarin-1 is unknown, its primary structure predicts four transmembrane domains similar to a large family of membrane proteins that include tetraspanins. Here we investigated the role of clarin-1 by using heterologous expression and in vivo model systems. When expressed in HEK293 cells, clarin-1 localized to the plasma membrane and concentrated in low density compartments distinct from lipid rafts. Clarin-1 reorganized actin filament structures and induced lamellipodia. This actin-reorganizing function was absent in the modified protein encoded by the most prevalent North American Usher syndrome III mutation, the N48K form of clarin-1 deficient in N-linked glycosylation. Proteomics analyses revealed a number of clarin-1-interacting proteins involved in cell-cell adhesion, focal adhesions, cell migration, tight junctions, and regulation of the actin cytoskeleton. Consistent with the hypothesized role of clarin-1 in actin organization, F-actin-enriched stereocilia of auditory hair cells evidenced structural disorganization in Clrn1−/− mice. These observations suggest a possible role for clarin-1 in the regulation and homeostasis of actin filaments, and link clarin-1 to the interactive network of Usher syndrome gene products.
PLOS Genetics | 2009
Scott F. Geller; K. Guerin; Meike Visel; Aaron Pham; Edwin S. Lee; Amiel A. Dror; Karen B. Avraham; Toshinori Hayashi; Catherine A. Ray; Thomas A. Reh; Olivia Bermingham-McDonogh; William J. Triffo; Shaowen Bao; J. Isosomppi; Hanna Västinsalo; E.-M. Sankila; John G. Flannery
Mutations in the CLRN1 gene cause Usher syndrome type 3 (USH3), a human disease characterized by progressive blindness and deafness. Clarin 1, the protein product of CLRN1, is a four-transmembrane protein predicted to be associated with ribbon synapses of photoreceptors and cochlear hair cells, and recently demonstrated to be associated with the cytoskeleton. To study Clrn1, we created a Clrn1 knockout (KO) mouse and characterized the histological and functional consequences of Clrn1 deletion in the retina and cochlea. Clrn1 KO mice do not develop a retinal degeneration phenotype, but exhibit progressive loss of sensory hair cells in the cochlea and deterioration of the organ of Corti by 4 months. Hair cell stereocilia in KO animals were longer and disorganized by 4 months, and some Clrn1 KO mice exhibited circling behavior by 5–6 months of age. Clrn1 mRNA expression was localized in the retina using in situ hybridization (ISH), laser capture microdissection (LCM), and RT–PCR. Retinal Clrn1 transcripts were found throughout development and adulthood by RT–PCR, although expression peaked at P7 and declined to undetectable levels in adult retina by ISH. LCM localized Clrn1 transcripts to the retinas inner nuclear layer, and WT levels of retinal Clrn1 expression were observed in photoreceptor-less retinas. Examination of Clrn1 KO mice suggests that CLRN1 is unnecessary in the murine retina but essential for normal cochlear development and function. This may reflect a redundancy in the mouse retina not present in human retina. In contrast to mouse KO models of USH1 and USH2, our data indicate that Clrn1 expression in the retina is restricted to the Müller glia. This is a novel finding, as most retinal degeneration associated proteins are expressed in photoreceptors, not in glia. If CLRN1 expression in humans is comparable to the expression pattern observed in mice, this is the first report of an inner retinal protein that, when mutated, causes retinal degeneration.
Hearing Research | 2007
Antti A. Aarnisalo; Laura Pietola; J. Joensuu; J. Isosomppi; P. Aarnisalo; Astra Dinculescu; Alfred S. Lewin; John G. Flannery; William W. Hauswirth; E.-M. Sankila; Jussi Jero
Usher syndrome type 3 is caused by mutations in the USH3A gene, which encodes the protein clarin-1. Clarin-1 is a member of the tetraspanin superfamily (TM4SF) of transmembrane proteins, expressed in the organ of Corti and spiral ganglion cells of the mouse ear. We have examined whether the AAV-mediated anti-clarin ribozyme delivery causes apoptotic cell death in vivo in the organ of Corti. We used an AAV-2 vector delivered hammerhead ribozyme, AAV-CBA-Rz, which specifically recognizes and cleaves wild type mouse clarin-1 mRNA. Cochleae of CD-1 mice were injected either with 1mul of the AAV-CBA-Rz, or control AAV vectors containing the green fluorescent protein (GFP) marker gene (AAV-CBA-GFP). Additional controls were performed with saline only. At one-week and one-month post-injection, the animals were sacrificed and the cochleae were studied by histology and fluorescence imaging. Mice injected with AAV-CBA-GFP displayed GFP reporter expression of varying fluorescence intensity throughout the length of the cochlea in the outer and inner hair cells and stria vascularis, and to a lesser extent, in vestibular epithelial cells. GFP expression was not detectable in the spiral ganglion. The pro-apoptotic effect of AAV-CBA-delivered anti-clarin-1 ribozymes was evaluated by TUNEL-staining. We observed in the AAV-CBA-Rz, AAV-CBA-GFP and saline control groups apoptotic nuclei in the outer and inner hair cells and in the stria vascularis one week after the microinjection. The vestibular epithelium was also observed to contain apoptotic cells. No TUNEL-positive spiral ganglion neurons were detected. After one-month post-injection, the AAV-CBA-Rz-injected group had significantly more apoptotic outer and inner hair cells and cells of the stria vascularis than the AAV-CBA-GFP group. In this study, we demonstrate that AAV-CBA mediated clarin-1 ribozyme may induce apoptosis of the cochlear hair cells and cells of the stria vascularis. Surprisingly, we did not observe apoptosis in spiral ganglion cells, which should also be susceptible to clarin-1 mRNA cleavage. This result may be due to the injection technique, the promoter used, or tropism of the AAV serotype 2 viral vector. These results suggest the role of apoptosis in the progression of USH3A hearing loss warrants further evaluation.
Investigative Ophthalmology & Visual Science | 2000
Minna Vesaluoma; E.-M. Sankila; Juana Gallar; L. J. Müller; W.M. Petroll; Jukka A. O. Moilanen; Henrik Forsius; T. Tervo
Investigative Ophthalmology & Visual Science | 2004
Scott F. Geller; J. Isosomppi; H. Makela; E.-M. Sankila; P.T. Johnson; John G. Flannery
Investigative Ophthalmology & Visual Science | 2009
Hanna Västinsalo; Jennifer B. Phillips; E.-M. Sankila; Monte Westerfield
Investigative Ophthalmology & Visual Science | 2008
Hanna Västinsalo; J. Isosomppi; L. Kleemola; L. Jauhola; E.-M. Sankila
Investigative Ophthalmology & Visual Science | 2007
Hanna Västinsalo; J. Isosomppi; Astra Dinculescu; William W. Hauswirth; Scott F. Geller; Jonathan Flannery; E.-M. Sankila