Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where J. Isosomppi is active.

Publication


Featured researches published by J. Isosomppi.


Developmental Brain Research | 1999

Developmental expression of palmitoyl protein thioesterase in normal mice

J. Isosomppi; Outi Heinonen; Jukka Hiltunen; Nicholas D.E. Greene; Jouni Vesa; Annukka Uusitalo; Hannah M. Mitchison; Mart Saarma; Anu Jalanko; Leena Peltonen

Deficiency in palmitoyl protein thioesterase (PPT) results in the rapid death of neocortical neurons in human. Very little is known about the developmental and cell-specific expression of this lysosomal enzyme. Here we show that PPT is expressed as a major 2.65 kb and a minor 1.85 kb transcript in the mouse brain. Transcript levels gradually increase between postnatal days 10 and 30. In situ hybridization analysis revealed that PPT transcripts are found widely but not homogeneously in the brain. The most intense signal was detected in the cerebral cortex (layers II, IV-V), hippocampal CA1-CA3 pyramidal cells, dentate gyrus granule cells and the hypothalamus. Immunostaining of PPT was localized in the cell soma, axons and dendrites, especially in the pyramidal and granular cells of the hippocampus, correlating well, both spatially and temporally, with the immunoreactivity of a presynaptic vesicle membrane protein, synaptophysin. In whole embryos, at embryonic day 8, the PPT mRNA expression was most apparent throughout the neuroepithelium, and from day 9 onwards it was seen in all tissues. The expression pattern of PPT suggests its general significance for the brain cells and reflects the response to maturation and growth of the neural networks. Strong PPT immunoreactivity in the axons and dentrites would imply that PPT may not be exclusively a lysosomal enzyme. A notable correlation with synaptophysin would suggest that PPT may have a role in the function of the synaptic machinery.


Journal of Biological Chemistry | 2009

Clarin-1, Encoded by the Usher Syndrome III Causative Gene, Forms a Membranous Microdomain: POSSIBLE ROLE OF CLARIN-1 IN ORGANIZING THE ACTIN CYTOSKELETON*

Guillian Tian; Yun Zhou; Dagmar Hajkova; Masaru Miyagi; Astra Dinculescu; William W. Hauswirth; Krzysztof Palczewski; Ruishuang Geng; Kumar N. Alagramam; J. Isosomppi; E.-M. Sankila; John G. Flannery; Yoshikazu Imanishi

Clarin-1 is the protein product encoded by the gene mutated in Usher syndrome III. Although the molecular function of clarin-1 is unknown, its primary structure predicts four transmembrane domains similar to a large family of membrane proteins that include tetraspanins. Here we investigated the role of clarin-1 by using heterologous expression and in vivo model systems. When expressed in HEK293 cells, clarin-1 localized to the plasma membrane and concentrated in low density compartments distinct from lipid rafts. Clarin-1 reorganized actin filament structures and induced lamellipodia. This actin-reorganizing function was absent in the modified protein encoded by the most prevalent North American Usher syndrome III mutation, the N48K form of clarin-1 deficient in N-linked glycosylation. Proteomics analyses revealed a number of clarin-1-interacting proteins involved in cell-cell adhesion, focal adhesions, cell migration, tight junctions, and regulation of the actin cytoskeleton. Consistent with the hypothesized role of clarin-1 in actin organization, F-actin-enriched stereocilia of auditory hair cells evidenced structural disorganization in Clrn1−/− mice. These observations suggest a possible role for clarin-1 in the regulation and homeostasis of actin filaments, and link clarin-1 to the interactive network of Usher syndrome gene products.


PLOS Genetics | 2009

CLRN1 Is Nonessential in the Mouse Retina but Is Required for Cochlear Hair Cell Development

Scott F. Geller; K. Guerin; Meike Visel; Aaron Pham; Edwin S. Lee; Amiel A. Dror; Karen B. Avraham; Toshinori Hayashi; Catherine A. Ray; Thomas A. Reh; Olivia Bermingham-McDonogh; William J. Triffo; Shaowen Bao; J. Isosomppi; Hanna Västinsalo; E.-M. Sankila; John G. Flannery

Mutations in the CLRN1 gene cause Usher syndrome type 3 (USH3), a human disease characterized by progressive blindness and deafness. Clarin 1, the protein product of CLRN1, is a four-transmembrane protein predicted to be associated with ribbon synapses of photoreceptors and cochlear hair cells, and recently demonstrated to be associated with the cytoskeleton. To study Clrn1, we created a Clrn1 knockout (KO) mouse and characterized the histological and functional consequences of Clrn1 deletion in the retina and cochlea. Clrn1 KO mice do not develop a retinal degeneration phenotype, but exhibit progressive loss of sensory hair cells in the cochlea and deterioration of the organ of Corti by 4 months. Hair cell stereocilia in KO animals were longer and disorganized by 4 months, and some Clrn1 KO mice exhibited circling behavior by 5–6 months of age. Clrn1 mRNA expression was localized in the retina using in situ hybridization (ISH), laser capture microdissection (LCM), and RT–PCR. Retinal Clrn1 transcripts were found throughout development and adulthood by RT–PCR, although expression peaked at P7 and declined to undetectable levels in adult retina by ISH. LCM localized Clrn1 transcripts to the retinas inner nuclear layer, and WT levels of retinal Clrn1 expression were observed in photoreceptor-less retinas. Examination of Clrn1 KO mice suggests that CLRN1 is unnecessary in the murine retina but essential for normal cochlear development and function. This may reflect a redundancy in the mouse retina not present in human retina. In contrast to mouse KO models of USH1 and USH2, our data indicate that Clrn1 expression in the retina is restricted to the Müller glia. This is a novel finding, as most retinal degeneration associated proteins are expressed in photoreceptors, not in glia. If CLRN1 expression in humans is comparable to the expression pattern observed in mice, this is the first report of an inner retinal protein that, when mutated, causes retinal degeneration.


European Journal of Human Genetics | 2011

Alternative splice variants of the USH3A gene Clarin 1 (CLRN1)

Hanna Västinsalo; Reetta Jalkanen; Astra Dinculescu; J. Isosomppi; Scott F. Geller; John G. Flannery; William W. Hauswirth; Eeva-Marja Sankila

Clarin 1 (CLRN1) is a four-transmembrane protein expressed in cochlear hair cells and neural retina, and when mutated it causes Usher syndrome type 3 (USH3). The main human splice variant of CLRN1 is composed of three exons that code for a 232-aa protein. In this study, we aimed to refine the structure of CLRN1 by an examination of transcript splice variants and promoter regions. Analysis of human retinal cDNA revealed 11 CLRN1 splice variants, of which 5 have not been previously reported. We studied the regulation of gene expression by several promoter domains using a luciferase assay, and identified 1000 nt upstream of the translation start site of the primary CLRN1 splice variant as the principal promoter region. Our results suggest that the CLRN1 gene is significantly more complex than previously described. The complexity of the CLRN1 gene and the identification of multiple splice variants may partially explain why mutations in CLRN1 result in substantial variation in clinical phenotype.


Otology & Neurotology | 2012

Speech recognition and communication outcomes with cochlear implantation in Usher syndrome type 3.

Laura Pietola; Antti A. Aarnisalo; Akram M Abdel-Rahman; Hanna Västinsalo; J. Isosomppi; Heikki Löppönen; Erna Kentala; Reijo Johansson; Hannu Valtonen; Juha-Pekka Vasama; Eeva-Marja Sankila; Jussi Jero

Background Usher syndrome Type 3 (USH3) is an autosomal recessive disorder characterized by variable type and degree of progressive sensorineural hearing loss and retinitis pigmentosa. Cochlear implants are widely used among these patients. Objectives To evaluate the results and benefits of cochlear implantation in patients with USH3. Study Design A nationwide multicenter retrospective review. Materials and Methods During the years 1995–2005, in 5 Finnish university hospitals, 19 patients with USH3 received a cochlear implant. Saliva samples were collected to verify the USH3 genotype. Patients answered to 3 questionnaires: Glasgow Benefit Inventory, Glasgow Health Status Inventory, and a self-made questionnaire. Audiological data were collected from patient records. Results All the patients with USH3 in the study were homozygous for the Finnish major mutation (p.Y176X). Either they had severe sensorineural hearing loss or they were profoundly deaf. The mean preoperative hearing level (pure-tone average, 0.5–4 kHz) was 110 ± 8 dB hearing loss (HL) and the mean aided hearing level was 58 ± 11 dB HL. The postoperative hearing level (34 ± 9 dB HL) and word recognition scores were significantly better than before surgery. According to the Glasgow Benefit Inventory scores and Glasgow Health Status Inventory data related to hearing, the cochlear implantation was beneficial to patients with USH3. Conclusion Cochlear implantation is beneficial to patients with USH3, and patients learn to use the implant without assistance.


Hearing Research | 2007

Anti-clarin-1 AAV-delivered ribozyme induced apoptosis in the mouse cochlea.

Antti A. Aarnisalo; Laura Pietola; J. Joensuu; J. Isosomppi; P. Aarnisalo; Astra Dinculescu; Alfred S. Lewin; John G. Flannery; William W. Hauswirth; E.-M. Sankila; Jussi Jero

Usher syndrome type 3 is caused by mutations in the USH3A gene, which encodes the protein clarin-1. Clarin-1 is a member of the tetraspanin superfamily (TM4SF) of transmembrane proteins, expressed in the organ of Corti and spiral ganglion cells of the mouse ear. We have examined whether the AAV-mediated anti-clarin ribozyme delivery causes apoptotic cell death in vivo in the organ of Corti. We used an AAV-2 vector delivered hammerhead ribozyme, AAV-CBA-Rz, which specifically recognizes and cleaves wild type mouse clarin-1 mRNA. Cochleae of CD-1 mice were injected either with 1mul of the AAV-CBA-Rz, or control AAV vectors containing the green fluorescent protein (GFP) marker gene (AAV-CBA-GFP). Additional controls were performed with saline only. At one-week and one-month post-injection, the animals were sacrificed and the cochleae were studied by histology and fluorescence imaging. Mice injected with AAV-CBA-GFP displayed GFP reporter expression of varying fluorescence intensity throughout the length of the cochlea in the outer and inner hair cells and stria vascularis, and to a lesser extent, in vestibular epithelial cells. GFP expression was not detectable in the spiral ganglion. The pro-apoptotic effect of AAV-CBA-delivered anti-clarin-1 ribozymes was evaluated by TUNEL-staining. We observed in the AAV-CBA-Rz, AAV-CBA-GFP and saline control groups apoptotic nuclei in the outer and inner hair cells and in the stria vascularis one week after the microinjection. The vestibular epithelium was also observed to contain apoptotic cells. No TUNEL-positive spiral ganglion neurons were detected. After one-month post-injection, the AAV-CBA-Rz-injected group had significantly more apoptotic outer and inner hair cells and cells of the stria vascularis than the AAV-CBA-GFP group. In this study, we demonstrate that AAV-CBA mediated clarin-1 ribozyme may induce apoptosis of the cochlear hair cells and cells of the stria vascularis. Surprisingly, we did not observe apoptosis in spiral ganglion cells, which should also be susceptible to clarin-1 mRNA cleavage. This result may be due to the injection technique, the promoter used, or tropism of the AAV serotype 2 viral vector. These results suggest the role of apoptosis in the progression of USH3A hearing loss warrants further evaluation.


Genomics | 1997

Toward cloning of a novel ataxia gene: refined assignment and physical map of the IOSCA locus (SCA8) on 10q24

Kaisu Nikali; J. Isosomppi; Tuula Lönnqvist; Jen-i Mao; Anu Suomalainen; Leena Peltonen


Molecular Vision | 2009

Disease-causing mutations in the CLRN1 gene alter normal CLRN1 protein trafficking to the plasma membrane

J. Isosomppi; Hanna Västinsalo; Scott F. Geller; Elise Héon; John G. Flannery; Eeva-Marja Sankila


Molecular Vision | 2006

Two Finnish USH1B patients with three novel mutations in myosin VIIA.

Hanna Västinsalo; J. Isosomppi; Aittakorpi A; Sankila Em


Investigative Ophthalmology & Visual Science | 2004

Vision Loss in Usher Syndrome Type III is Caused by Mutations in Clarin–1, an Inner Retinal Protein.

Scott F. Geller; J. Isosomppi; H. Makela; E.-M. Sankila; P.T. Johnson; John G. Flannery

Collaboration


Dive into the J. Isosomppi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jussi Jero

University of Helsinki

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge