Hanna Västinsalo
University of Helsinki
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Hanna Västinsalo.
PLOS Genetics | 2009
Scott F. Geller; K. Guerin; Meike Visel; Aaron Pham; Edwin S. Lee; Amiel A. Dror; Karen B. Avraham; Toshinori Hayashi; Catherine A. Ray; Thomas A. Reh; Olivia Bermingham-McDonogh; William J. Triffo; Shaowen Bao; J. Isosomppi; Hanna Västinsalo; E.-M. Sankila; John G. Flannery
Mutations in the CLRN1 gene cause Usher syndrome type 3 (USH3), a human disease characterized by progressive blindness and deafness. Clarin 1, the protein product of CLRN1, is a four-transmembrane protein predicted to be associated with ribbon synapses of photoreceptors and cochlear hair cells, and recently demonstrated to be associated with the cytoskeleton. To study Clrn1, we created a Clrn1 knockout (KO) mouse and characterized the histological and functional consequences of Clrn1 deletion in the retina and cochlea. Clrn1 KO mice do not develop a retinal degeneration phenotype, but exhibit progressive loss of sensory hair cells in the cochlea and deterioration of the organ of Corti by 4 months. Hair cell stereocilia in KO animals were longer and disorganized by 4 months, and some Clrn1 KO mice exhibited circling behavior by 5–6 months of age. Clrn1 mRNA expression was localized in the retina using in situ hybridization (ISH), laser capture microdissection (LCM), and RT–PCR. Retinal Clrn1 transcripts were found throughout development and adulthood by RT–PCR, although expression peaked at P7 and declined to undetectable levels in adult retina by ISH. LCM localized Clrn1 transcripts to the retinas inner nuclear layer, and WT levels of retinal Clrn1 expression were observed in photoreceptor-less retinas. Examination of Clrn1 KO mice suggests that CLRN1 is unnecessary in the murine retina but essential for normal cochlear development and function. This may reflect a redundancy in the mouse retina not present in human retina. In contrast to mouse KO models of USH1 and USH2, our data indicate that Clrn1 expression in the retina is restricted to the Müller glia. This is a novel finding, as most retinal degeneration associated proteins are expressed in photoreceptors, not in glia. If CLRN1 expression in humans is comparable to the expression pattern observed in mice, this is the first report of an inner retinal protein that, when mutated, causes retinal degeneration.
JAMA Ophthalmology | 2013
Kavitha Ratnam; Hanna Västinsalo; Austin Roorda; Eeva-Marja Sankila; Jacque L. Duncan
OBJECTIVE To study macular structure and function in patients with Usher syndrome type III (USH3) caused by mutations in the Clarin 1 gene (CLRN1). METHODS High-resolution macular images were obtained by adaptive optics scanning laser ophthalmoscopy and spectral domain optical coherence tomography in 3 patients with USH3 and were compared with those of age-similar control subjects. Vision function measures included best-corrected visual acuity, kinetic and static perimetry, and full-field electroretinography. Coding regions of the CLRN1 gene were sequenced. RESULTS CLRN1 mutations were present in all the patients; a 20-year-old man showed compound heterozygous mutations (p.N48K and p.S188X), and 2 unrelated women aged 25 and 32 years had homozygous mutations (p.N48K). Best-corrected visual acuity ranged from 20/16 to 20/40, with scotomas beginning at 3° eccentricity. The inner segment-outer segment junction or the inner segment ellipsoid band was disrupted within 1° to 4° of the fovea, and the foveal inner and outer segment layers were significantly thinner than normal. Cones near the fovea in patients 1 and 2 showed normal spacing, and the preserved region ended abruptly. Retinal pigment epithelial cells were visible in patient 3 where cones were lost. CONCLUSIONS Cones were observed centrally but not in regions with scotomas, and retinal pigment epithelial cells were visible in regions without cones in patients with CLRN1 mutations. High-resolution measures of retinal structure demonstrate patterns of cone loss associated with CLRN1 mutations. CLINICAL RELEVANCE These findings provide insight into the effect of CLRN1 mutations on macular cone structure, which has implications for the development of treatments for USH3. TRIAL REGISTRATION clinicaltrials.gov Identifier: NCT00254605.
Gene Expression Patterns | 2013
Jennifer B. Phillips; Hanna Västinsalo; Jeremy Wegner; Aurélie Clément; Eeva-Marja Sankila; Monte Westerfield
Clarin-1 (CLRN1) is the causative gene in Usher syndrome type 3A, an autosomal recessive disorder characterized by progressive vision and hearing loss. CLRN1 encodes Clarin-1, a glycoprotein with homology to the tetraspanin family of proteins. Previous cell culture studies suggest that Clarin-1 localizes to the plasma membrane and interacts with the cytoskeleton. Mouse models demonstrate a role for the protein in mechanosensory hair bundle integrity, but the function of Clarin-1 in hearing remains unclear. Even less is known of its role in vision, because the Clrn1 knockout mouse does not exhibit a retinal phenotype and expression studies in murine retinas have provided conflicting results. Here, we describe cloning and expression analysis of the zebrafish clrn1 gene, and report protein localization of Clarin-1 in auditory and visual cells from embryonic through adult stages. We detect clrn1 transcripts as early as 24h post-fertilization, and expression is maintained through adulthood. In situ hybridization experiments show clrn1 transcripts enriched in mechanosensory hair cells and supporting cells of the inner ear and lateral line organ, photoreceptors, and cells of the inner retina. In mechanosensory hair cells, Clarin-1 is polarized to the apical cell body and the synapses. In the retina, Clarin-1 localizes to lateral cell contacts between photoreceptors and is associated with the outer limiting membrane and subapical processes emanating from Müller glial cells. We also find Clarin-1 protein in the outer plexiform, inner nuclear and ganglion cell layers of the retina. Given the importance of Clarin-1 function in the human retina, it is imperative to find an animal model with a comparable requirement. Our data provide a foundation for exploring the role of Clarin-1 in retinal cell function and survival in a diurnal, cone-dominant species.
European Journal of Human Genetics | 2011
Hanna Västinsalo; Reetta Jalkanen; Astra Dinculescu; J. Isosomppi; Scott F. Geller; John G. Flannery; William W. Hauswirth; Eeva-Marja Sankila
Clarin 1 (CLRN1) is a four-transmembrane protein expressed in cochlear hair cells and neural retina, and when mutated it causes Usher syndrome type 3 (USH3). The main human splice variant of CLRN1 is composed of three exons that code for a 232-aa protein. In this study, we aimed to refine the structure of CLRN1 by an examination of transcript splice variants and promoter regions. Analysis of human retinal cDNA revealed 11 CLRN1 splice variants, of which 5 have not been previously reported. We studied the regulation of gene expression by several promoter domains using a luciferase assay, and identified 1000 nt upstream of the translation start site of the primary CLRN1 splice variant as the principal promoter region. Our results suggest that the CLRN1 gene is significantly more complex than previously described. The complexity of the CLRN1 gene and the identification of multiple splice variants may partially explain why mutations in CLRN1 result in substantial variation in clinical phenotype.
Otology & Neurotology | 2012
Laura Pietola; Antti A. Aarnisalo; Akram M Abdel-Rahman; Hanna Västinsalo; J. Isosomppi; Heikki Löppönen; Erna Kentala; Reijo Johansson; Hannu Valtonen; Juha-Pekka Vasama; Eeva-Marja Sankila; Jussi Jero
Background Usher syndrome Type 3 (USH3) is an autosomal recessive disorder characterized by variable type and degree of progressive sensorineural hearing loss and retinitis pigmentosa. Cochlear implants are widely used among these patients. Objectives To evaluate the results and benefits of cochlear implantation in patients with USH3. Study Design A nationwide multicenter retrospective review. Materials and Methods During the years 1995–2005, in 5 Finnish university hospitals, 19 patients with USH3 received a cochlear implant. Saliva samples were collected to verify the USH3 genotype. Patients answered to 3 questionnaires: Glasgow Benefit Inventory, Glasgow Health Status Inventory, and a self-made questionnaire. Audiological data were collected from patient records. Results All the patients with USH3 in the study were homozygous for the Finnish major mutation (p.Y176X). Either they had severe sensorineural hearing loss or they were profoundly deaf. The mean preoperative hearing level (pure-tone average, 0.5–4 kHz) was 110 ± 8 dB hearing loss (HL) and the mean aided hearing level was 58 ± 11 dB HL. The postoperative hearing level (34 ± 9 dB HL) and word recognition scores were significantly better than before surgery. According to the Glasgow Benefit Inventory scores and Glasgow Health Status Inventory data related to hearing, the cochlear implantation was beneficial to patients with USH3. Conclusion Cochlear implantation is beneficial to patients with USH3, and patients learn to use the implant without assistance.
Acta Ophthalmologica | 2013
Hanna Västinsalo; Reetta Jalkanen; Carsten Bergmann; Christine Neuhaus; Leenamaija Kleemola; Liisa Jauhola; Hanno J. Bolz; Eeva-Marja Sankila
Purpose: The Finnish distribution of clinical Usher syndrome (USH) types is 40% USH3, 34% USH1 and 12% USH2. All patients with USH3 carry the founder mutation in clarin 1 (CLRN1), whereas we recently reported three novel myosin VIIA (MYO7A) mutations in two unrelated patients with USH1. This study was carried out to further investigate the USH mutation spectrum in Finnish patients.
Molecular Vision | 2009
J. Isosomppi; Hanna Västinsalo; Scott F. Geller; Elise Héon; John G. Flannery; Eeva-Marja Sankila
Molecular Vision | 2006
Hanna Västinsalo; J. Isosomppi; Aittakorpi A; Sankila Em
Investigative Ophthalmology & Visual Science | 2011
Kavitha Ratnam; Hanna Västinsalo; S. Sundquist; Austin Roorda; Eeva-Marja Sankila; Jacque L. Duncan
Investigative Ophthalmology & Visual Science | 2011
Astra Dinculescu; Yoshikazu Imanishi; Frank M. Dyka; J. Liu; Issam McDoom; Xuan Liu; Hanna Västinsalo; Reetta Jalkanen; Eeva-Marja Sankila; William W. Hauswirth