E. P. Devyatkina
Russian Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by E. P. Devyatkina.
Russian Journal of Genetics | 2008
N. V. Trubacheeva; E. D. Badaeva; I. G. Adonina; L. I. Belova; E. P. Devyatkina; L. A. Pershina
Individual plants from the BC1F6 and BC1F8 backcross progenies of barley-wheat [H. marinum subsp. gussoneanum Hudson (=H. geniculatum All.) (2n = 28) × T. aestivum L. (2n = 42)] and the BC1F6 progeny of their amphiploids were used to obtain alloplasmic euploid (2n = 42) lines L-28, L-29, and L-49 and alloplasmic telocentric addition (2n = 42 + 2t) lines L-37, L-38, and L-50. The lines were examined by genomic in situ hybridization (GISH), microsatellite analysis, chromosome C-banding, and PCR analysis of the mitochondrial 18S/5S repeat. Lines L-29 and L-49 were characterized by substitution of wild barley chromosome 7H1 for common wheat chromosome 7D. In line L-49, common wheat chromosomes 1B, 5D, and 7D were substituted with homeologous barley chromosomes. Lines L-37, L-38, and L-50 each contained a pair of telocentric chromosomes, which corresponded to barley chromosome arm 7H1L. All lines displayed heteroplasmy for the mitochondrial 18S/5S locus; i.e., both barley and wheat sequences were found.
Russian Journal of Genetics | 2009
L. A. Pershina; E. P. Devyatkina; L. I. Belova; N. V. Trubacheeva; V. S. Arbuzova; L. A. Kravtsova
Two alloplasmic wheat-barley substitution lines were studied: a line replaced at three pairs of chromosomes 1Hmar(1B), 5Hmar(5D), and 7Hmar(7D), and the disomic-substituted line 7Hmar(7D). The lines were constructed on the basis of individual plants from BC1F8 and BC2F6 progeny of barley-wheat hybrids (H. marinum subsp. gussoneanum Hudson (= H. geniculatum All.) (2n = 28) × T. aestivum L.) (2n = 42) (Pyrotrix 28), respectively. Moreover, the alloplasmic wheat-barley ditelosomic addition line 7HLmar isolated among plants from the BC1F6 progeny of a barley-wheat amphiploid was studied, which in this work corresponds to BC2F10 and BC2F11 progeny. It was ascertained that when grown in the field, these alloplasmic lines manifest stable self-fertility. Plants of the given lines are characterized by low height, shortened ears, the fewer number of stems and ears, and of spikelets in the ear, by decreased grain productivity and weight of 1000 grains, in comparison with the common wheat cultivar Pyrotrix 28. The inhibition of trait expression in alloplasmic wheat-barley substitution and addition lines may be connected not only with the influence of wild barley chromosomes functioning in the genotypic environment of common wheat, but also with the effect of the barley cytoplasm. The alloplasmic line with substitution of chromosomes 1Hmar(1B), 5Hmar(5D), and 7Hmar(7D) or the alloplasmic line 5HLmar with ditelosomic addition have, in comparison with the common wheat cultivar Pyrotrix 28, an increased grain protein content, which is explained by the effect of wild barley H. marinum subsp. gussoneanum chromosomes.
Russian Journal of Genetics | 2009
N. V. Trubacheeva; T. T. Efremova; E. D. Badaeva; L. A. Kravtsova; L. I. Belova; E. P. Devyatkina; L. A. Pershina
Alloplasmic lines of common wheat with disomic substitution of chromosome 7D for telocentric chromosome 7H1Lmar of barley H. marinum subsp. gussoneanum Hudson were isolated from the plants of generation BC3, produced as a result of backcrossing of barley-wheat hybrids H. marinum subsp. gussoneanum (2n = 28) × T. aestivum (2n = 42), Pyrotrix, cultivar, with 28 common wheat cultivars Pyrotrix 28 and Novosibirskaya 67. Chromosome substitution pattern was determined using SSR analysis and C-banding. In preliminary genomic in situ hybridization experiments, telocentric chromosomes were assigned to wild barley was established. In the BC3F8 generations of three alloplasmic lines with the 7H1Lmar(7D) substitution type the differences in fertility manifestation were observed: most of the L-32(1) plants were sterile, in line L-32(2) only sporadic plants were sterile, and line L-32(3) was fertile. Simultaneously with these experiments, using selfpollinated progeny of the hybrids obtained in crosses of common wheat cultivar Saratovskaya 29 (2n = 41), monosomic for chromosome 7D, with common wheat cultivar Pyrotrix 28 with addition of pair of telocentric chromosomes 7H1Lmar (7D) of barley H. marinum subsp. gussoneanum, euplasmic wheat-barley ditelosomic substitution 7H1Lmar (7D) lines were isolated. The lines obtained had normal fertility. PCR analysis of the 18S/5S mitochondrial repeat (hereafter, mtDNA sequence) in alloplasmic and euplasmic ditelosomic substitution lines 7H1Lmar(7D) was performed. In the plants from alloplasmic sterile line L-32(1), the sequences only of the barley (maternal) type were revealed, while the plants from alloplasmic fertile lines L-32(2) and L-32(3) demonstrated heteroplasmy (the presence of barley- and wheat-like sequences within one individual). In euplasmic ditelosomic substitution lines the presence of only wheat-like 18S/5S mitochondrial repeat sequences was observed. The results indicate that the presence of barley-like mtDNA sequences in alloplasmic substitution lines was not associated with the presence of barley chromosomes in their nuclear genomes.
Russian Journal of Genetics | 2006
L. A. Pershina; N. V. Trubacheeva; T. S. Rakovtseva; L. I. Belova; E. P. Devyatkina; L. A. Kravtsova
We studied some features of the development of self-fertile 42-chromosome lines on the base of self-pollination progeny of 46-chromosome plants obtained by backcrossing of barley-wheat hybrids Hordeum marinum subsp. gussoneanum Hudson (= H. geniculatum All.) (2n = 28) × Triticum aestivum L. (2n = 42). The stabilization of karyotypes, resulting in 42-chromosome plants of the wheat type was generally completed by generation BC1F10. The plants of all self-pollination progenies, including BC1F10, showed some phenotypic traits characteristic of wild barley. Plants of BC1F10 with the chromosome sets 2n = 42 and 2n = 42 + t were analyzed by RAPD with a set of 115 primers. Fragments of the wild barley genome were detected in RAPD patterns with 19 primers. Cross-hybridization confirmed that these fragments belonged to the wild barley genome. We raised four phenotypically different 42-chromosome lines from grains obtained from plants of generation BC1F10, and these lines proved to be cytogenetically stable and self-fertile when grown in the field.
Russian Journal of Genetics | 2014
L. A. Pershina; N. V. Trubacheeva; M. G. Sinyavskaya; E. P. Devyatkina; L. A. Kravtsova
Alloplasmic lines combining alien nuclear and cytoplasmic genomes are convenient models for studying the mechanisms of nuclear-cytoplasmic compatibility/incompatibility. In the present study, we have investigated the correlation between the characters and state of mitochondrial (mt) and chloroplast (cp) DNA regions in alloplasmic recombinant common wheat lines with barley cytoplasm characterized by partial or total fertility. Fertility restoration in the studied lines (Hordeum vulgare)-Triticum aestivum is determined by different ratios of the genetic material of common wheat variety Pyrotrix 28, which is a fertility restorer in the cytoplasm of barley, and variety Saratovskaya 29, which is a fixer of sterility. In partially fertile lines with nuclear genomes dominated by the genetic material of Saratovskaya 29, plant growth and development are suppressed. In these lines we have identified the barley homoplasmy of cpDNA regions infA and rpoB and the heteroplasmy of the 18S/5S mt repeat and the cpDNA ycf5 region. Nuclear-cytoplasmic compatibility in lines with reduced fertility (the genetic material of Pyrotrix 28 predominates in their nuclear genomes) is associated with restoration of normal plant growth and development and the changes in the state of the studied cpDNA and mtDNA regions towards the wheat type. Thus, in fertile lines, the cpDNA regions (infA, rpoB) and the 18S/5S mt repeat were identified in the homoplasmic wheat state; though the cpDNA ycf5 region was in the heteroplasmic state, it was dominated by the wheat type of the copies. The nuclear-cytoplasmic compatibility is not broken as a result of introgression of the alien genetic material into the nuclear genome of one of the fertile lines; the plants of introgressive lines are fertile and normally developed, and the states of the cpDNA and mtDNA regions correspond to their states in fertile recombinant lines.
Russian Journal of Genetics: Applied Research | 2012
N. V. Trubacheeva; L. A. Kravtsova; E. P. Devyatkina; T. T. Efremova; M. G. Sinyavskaya; V. K. Shumny; L. A. Pershina
The states of 18S/5S mitochondrial (mt) repeat and some chloroplast (cp) DNA regions have been investigated in alloplasmic lines of common wheat carrying cytoplasm of the barley species Hordeum marinum subsp. gussoneanum Hudson and H. vulgare L. and in the progenies of the reciprocal hybrids between Triticum aestivum L. and Secale cereale L. The heteroplasmic state of the 18/5S mt repeat, which was a result of a biparental mtDNA transmission, has been observed in rye × wheat hybrids and in their progeny carrying rye cytoplasm. For the first time, the heteroplasmic state of cpDNA associated with the heteroplasmy of 18S/5S mt repeat has been detected in cereals with the use of alloplasmic wheat lines. The transition of mt- and cpDNA heteroplasmy and barley cpDNA homoplasmy to wheat homoplasmy is associated with complete restoration of fertility and elimination of the barley chromosome from the newly developing nuclear wheat genome of alloplasmic lines.
Russian Journal of Genetics | 2012
L. A. Pershina; E. P. Devyatkina; N. V. Trubacheeva; L. A. Kravtsova; O. B. Dobrovol’skaya
The problems of fertility restoration in the progeny of barley-wheat hybrids (H. vulgare × T. aestivum) are explained by incompatibility between the cytoplasm of cultivated barley and the nuclear genome of common wheat. Appropriate models for studying these problems are alloplasmic lines that combine the cytoplasm of barley and the nuclear genome of wheat. In this work, the differences of fertility restoration in alloplasmic common wheat lines (H. vulgare)-T. aestivum were studied depending on the influence of wheat varieties Saratovskaya 29 (Sar29) and Pyrotrix 28 (Pyr28) used to produce these lines. The alloplasmic lines were created using hybrids between the 48-chromosome offspring (Amph1) of the barley-wheat amphiploid H. vulgare (ya-319) × T. aestivum (Sar29) and these wheat varieties. Backcrossing of the Amph1 (2n = 48) × Sar29 hybrid with the wheat variety Sar29 resulted in the complete sterility in the (H. vulgare)-Sar29 line, which suggests the incompatibility of the nuclear genome of the common wheat variety Sar29 with the cytoplasm of H. vulgare. Crossing of Amph1 (2n = 48) with Pyr28 resulted in the restoration of self-fertility in the hybrid with 2n = 44. In the alloplasmic lines (2n = 42) formed based on plants of the self-fertilized generations of this hybrid, the barley chromosomes were eliminated, and recombination between the nuclear genomes of the parental wheat varieties Sar29 and Pyr28 took place. Alloplasmic recombinant lines (H. vulgare)-T. aestivum with different levels of fertility were isolated. As was shown by the SSR analysis, differences in the fertility between these lines are determined by differences in the content of the genetic material from the wheat varieties Sar29 and Pyr28. The complete restoration of fertility in these alloplasmic recombinant lines is accompanied by the formation of a nuclear genome in which the genetic material of Pyr28 significantly prevails. The conclusion is made that the common wheat variety Pyrotrix 28 is a carrier of a gene (or genes), which determines the restoration of common wheat fertility on the cytoplasm of cultivated barley.
Russian Journal of Genetics | 2007
L. A. Pershina; T. S. Rakovtseva; L. I. Belova; E. P. Devyatkina; O. G. Silkova; L. A. Kravtsova; A. I. Shchapova
The effect of rye chromosomes on polyembryony was studied for reciprocal hybrid combinations between (Hordeum vulgare L.)-Triticum aestivum L. alloplasmic recombinant lines and five wheat T. aestivum L. (cultivar Saratovskaya 29)-rye Secale cereale L. (cultivar Onokhosikaya) substitution lines: 1R(1D), 2R(2D), 3R(3B), 5R(5A), and 6R(6A), and for direct hybrid combinations between the [H. marinum ssp. gussoneanum (H. geniculatum All.)]-T. aestivum alloplasmic recombinant line and the wheat-rye substitution lines 1R(1A), 1R(1D), and 3R(3B). Chromosomes 1R and 3R of rye cultivar Onokhoiskaya proved to affect the expression of polyembryony in the hybrid combinations that involved the alloplasmic recombinant lines of common wheat as maternal genotypes. Based on this finding, polyembryony was regarded as a phenotypic expression of nuclear-cytoplasmic interactions where an important role is played by rye chromosomes 1R and 3R and the H. vulgare cytoplasm. Consideration is given to the association between the effect of rye chromosomes 1R and 3R on polyembryony in the [(Hordeum)-T. aestivum × wheat-rye substitution lines] hybrid combinations and their stimulating effect on the development on androgenic embryoids in isolated anther cultures of the wheat-rye substitution lines.
Russian Journal of Genetics: Applied Research | 2015
T. S. Osadchaya; L. A. Pershina; N. V. Trubacheeva; I. A. Belan; L. P. Rosseeva; E. P. Devyatkina
Androgenic ability was studied in anther cultures of euplasmic lines of common wheat and alloplasmic recombinant lines (H. vulgare)–T. aestivum with 1RS.1BL and 7DL-7Ai translocations. The ability to produce androgenic structures and plantlet regeneration are suppressed in lines carrying both translocations. Alloplasmic recombinant lines (H. vulgare)–T. aestivum with the 1RS.1BL and 7DL-7Ai translocations, as well as alloplasmic lines with the 1RS.1BL translocation, are characterized by their increased ability to form androgenic structures, including polyembryos, and plantlet regeneration compared to euplasmic lines. The inducing reciprocal influence of barley cytoplasm and rye chromosome 1RS on the androgenesis ability of lines (H. vulgare)–T. aestivum with 1RS.1BL and 7DL-7Ai translocations is discussed. Double haploid lines were developed from androgenic plants with spontaneously doubled chromosome numbers and restored fertility. Of the lines carrying the translocations, the most promising with regard to the exhibition of agronomic valuable traits and resistance to diseases were selected in order to utilize them in breeding programs.
Russian Journal of Genetics | 1999
L. A. Pershina; O. M. Numerova; L. I. Belova; E. P. Devyatkina; V. K. Shumny