Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where L. A. Pershina is active.

Publication


Featured researches published by L. A. Pershina.


Russian Journal of Genetics | 2004

Molecular study and C-banding of chromosomes in common wheat alloplasmic lines obtained from the backcross progeny of barley–wheat hybrids Hordeum vulgare L. (2n = 14) × Triticum aestivum L. (2n = 42) and differing in fertility

L. L. Bildanova; E. D. Badaeva; L. A. Pershina; E. A. Salina

We studied common wheat alloplasmic lines differing in fertility traits, which had been obtained from the backcross progeny of barley—wheat hybrids Hordeum vulgare L. (2n = 14) × Triticum aestivum L. (2n = 42), using molecular analysis and chromosome C-banding. It was found that the nuclei of all alloplasmic lines studied, regardless of their fertility traits, contained only the common wheat chromosomes (2n = 42). The formation of line L-79(10)(3)F6, stable for self-fertility, from line L-79(10)F3 was accompanied by changes of the proportions of simple sequence repeats of the parental common wheat varieties in the nuclear genome. The presence of barley genome fragments in line accessions with incomplete self-fertility was shown by RAPD. Heteroplasmy for mitochondrial genome loci was detected in these lines with the use of primers specific to the tMet-18S-5S repeat of mitochondrial ribosomal genes.


Russian Journal of Genetics | 2006

Cytogenetic Analysis of Alloplasmic Recombinant Lines ( H. vulgare )- T. aestivum Unstable in Fertility and Viability

E. D. Badaeva; L. A. Pershina; L. L. Bil’danova

Comparative cytogenetic analysis was performed with four alloplasmic recombinant (Hordeum vulgare)—Triticum aestivum lines differing in morphological traits, number of seeds per spike, and seed plumpness. None of the lines displayed introgression of the barley genetic material: the karyotypes included only common wheat chromosomes. Two lines, 79(B) and 79(D), were cytogenetically stable. Plants of lines 79(A) and 79(C) displayed a high frequency of unbalanced chromosome aberrations, including dicentric and polycentric chromosomes, terminal deletions varying in size, acentric fragments, and multiple unidentifiable translocations. Previous studies of the mitochondrial (mt) genome showed that the two cytologically unstable lines 79(C) and 79(A), which were also unstable in fertility and viability, are characterized by heteroplasmy at the mitochondrial 18S-5S locus (simultaneous presence of barley and wheat mt-fragments). Stable lines 79(B) and 79(D) with normal fertility contained only wheat mitochondrial markers. It was assumed that the substantial instability of the nuclear genome in lines 79(C) and 79(A) was a result of nuclear-cytoplasmic incompatibility and was associated with heteroplasmy, while elimination or considerable reduction of barley material in the mitochondrial genome stabilized the nuclear genome of lines 79(B) and 79(D). In turn, the instability of the nuclear genome was responsible for a decrease in viability and fertility of plants.


Russian Journal of Genetics | 2008

Production and molecular and cytogenetic analyses of euploid (2n = 42) and telocentric addition (2n = 42 + 2t) alloplasmic lines (Hordeum marinum subsp. gussoneanum)-Triticum aestivum

N. V. Trubacheeva; E. D. Badaeva; I. G. Adonina; L. I. Belova; E. P. Devyatkina; L. A. Pershina

Individual plants from the BC1F6 and BC1F8 backcross progenies of barley-wheat [H. marinum subsp. gussoneanum Hudson (=H. geniculatum All.) (2n = 28) × T. aestivum L. (2n = 42)] and the BC1F6 progeny of their amphiploids were used to obtain alloplasmic euploid (2n = 42) lines L-28, L-29, and L-49 and alloplasmic telocentric addition (2n = 42 + 2t) lines L-37, L-38, and L-50. The lines were examined by genomic in situ hybridization (GISH), microsatellite analysis, chromosome C-banding, and PCR analysis of the mitochondrial 18S/5S repeat. Lines L-29 and L-49 were characterized by substitution of wild barley chromosome 7H1 for common wheat chromosome 7D. In line L-49, common wheat chromosomes 1B, 5D, and 7D were substituted with homeologous barley chromosomes. Lines L-37, L-38, and L-50 each contained a pair of telocentric chromosomes, which corresponded to barley chromosome arm 7H1L. All lines displayed heteroplasmy for the mitochondrial 18S/5S locus; i.e., both barley and wheat sequences were found.


Russian Journal of Genetics | 2013

Development and study of spring bread wheat variety Pamyati Maystrenko with introgression of genetic material from synthetic hexaploid Triticum timopheevii Zhuk. × Aegilops tauschii Coss.

L. I. Laikova; I. A. Belan; E. D. Badaeva; L. P. Rosseeva; S. S. Shepelev; V. K. Shumny; L. A. Pershina

Synthetic hexaploids are bridges for transferring new genes that determine resistance to stress factors from wild-type species to bread wheat. In the present work, the method of developing the spring bread wheat variety Pamyati Maystrenko and the results of its study are described. This variety was obtained using one of the immune lines produced earlier via the hybridization of the spring bread wheat variety Saratovskaya 29 with the synthetic hexaploid T. timopheevii Zhuk. × Ae. tauschii Coss. The C-staining of chromosomes in the Pamyati Maystrenko variety revealed substitutions of 2B and 6B chromosomes by the homeologous chromosomes of the G genome of T. timopheevii and the substitution of chromosome 1D by an orthologous chromosome of Ae. tauschii. It was found that this variety is characterized by resistance to leaf and stem rust, powdery mildew, and loose smut as well as by high grain and bread-making qualities. The role of the alien genetic material introgressed into the bread-wheat genome in the expression of adaptive and economically valuable traits in the Pamyati Maystrenko variety is discussed.


Russian Journal of Genetics | 2011

Characteristics of common wheat cultivars of West Siberia carrying the wheat-rye 1RS.1BL translocation

N. V. Trubacheeva; L. P. Rosseeva; I. A. Belan; T. S. Osadchaya; L. A. Kravtsova; Yu. V. Kolmakov; N. P. Blokhina; L. A. Pershina

Using genomic in situ hybidization, among the common wheat cultivars produced in West Siberia (Siberian Research Institute of Agriculture, Omsk) with the involvement of the winter wheat cultivar Kavkaz carrying the wheat-rye 1RS.1BL translocation we identified three cultivars with this translocation: Omskaya 29, Omskaya 37, and Omskaya 38. The protein and crude gluten contents in the grain of these cultivars are equal to or exceed the levels observed in cultivars without the wheat-rye translocation. The common wheat cultivars carrying the wheat-rye translocation were evaluated in terms of resistance of plants reaching wax ripeness to leaf rust and powdery mildew in the natural field conditions. The cultivars Omskaya 37 and Omskaya 38 displayed a high field resistance to leaf rust and were resistant to a variable extent to powdery mildew. The cultivar Omskaya 29 was susceptible to leaf rust and powdery mildew pathogens. Importance of the selection direction and the role of the genetic background in developing common wheat cultivars carrying the wheat-rye translocation is discussed.


Russian Journal of Genetics | 2004

Barley Chromosome Identification Using Genomic in Situ Hybridization in the Genome of Backcrossed Progeny of Barley–Wheat Amphiploids [Hordeum geniculatum all. (2n = 28) × Triticum aestivum L. (2n = 42)] (2n = 70)

O. M. Numerova; L. A. Pershina; E. A. Salina; V. K. Shumny

Genomic in situ hybridization (GISH) has been used to study characteristics of the formation of alloplasmic lines detected among self-pollinated backcrossed progeny (BC1F5–BC1F8) of barley–wheat amphiploids [Hordeum geniculatum All. (2n = 28) × Triticum aestivum L. (2n = 42)] (2n = 70). The chromosome material of the wild barley H. geniculatum has been shown to contribute to these lines. For example, fifth-generation plants (BC1F5) had genotypes (2n= 42w + 2g), (2n = 42w + 1g + 1tg), and (2n = 41w + 1g), where w is common wheat chromosomes, g is barley (H. geniculatum) chromosomes, and tg is the telocentric chromosome of wild barley. Beginning from theBC1F6 generation, alloplasmic telocentric addition lines (2n= 42 + 2tg) and (2n = 42 + 1tg) appear. This lines has been found cytogenetically unstable. The progeny of each of these cytological types include not only the (2n= 42 + 2tg) and (2n = 42 + 1tg) addition plants, but also plants with the monosomic (2n = 41 + 1tg) and the disomic (2n = 40 + 2tg) substitutions, as well as the (2n = 41 + 2tg) plants, which lack one wheat chromosome and have two telocentric barley chromosomes. It has been demonstrated that the selection for well-filled grains favors the segregation of telocentric addition lines (2n = 42 + 2tg) and (2n = 42 + 1tg).


Russian Journal of Genetics | 2003

Comparative Effects of Rye Chromosomes 1R and 5R on Androgenesis in Cultured Anthers of Wheat-Rye Substitution Lines as Dependent on the Line Origin

O. B. Dobrovolskaya; L. A. Pershina; L. A. Kravtsova; A. I. Shchapova

The effects of rye chromosomes 1R and 5R on androgenesis in cultured anthers of wheat–rye substitution lines was studied as dependent on the cultivar origin of the rye chromosomes and on the wheat genome (A or D) subjected to substitution. Chromosome 1R stimulated embryogenesis in anther cultures, while chromosome 5R suppressed it regardless of whether the corresponding wheat chromosomes were substituted in the A or D genome. The effect of chromosome 1R on embryogenesis proved to depend on its cultivar origin. Along with rye chromosome 1R, wheat chromosome 1A was shown to substantially affect total seedling regeneration. Regeneration of green seedlings was dramatically affected both by rye chromosome 1R and by wheat chromosome 1D. The results supported the published data that individual androgenesis parameters (embryogenesis, total plant regeneration, green plant regeneration) are controlled by different genetic mechanisms.


Russian Journal of Genetics | 2003

Specific Features of the Nuclear Genome Recombination in Backcross Progenies of Barley–Wheat Hybrids Hordeum vulgare L. (2n = 14) × Triticum aestivum L. (2n = 42)

L. L. Bildanova; E. A. Salina; L. A. Pershina

The backcross progenies of the barley–wheat hybrids Hordeum vulgare L. (2n = 14) × Triticum aestivum L. (2n= 42) and two alloplasmic lines derived from them were studied using microsatellite markers of barley and wheat. The F1 hybrids and first backcross plants BC1 contained the genetic material of both cultivated barley and the cultivars of common wheat involved in developing of these hybrid genotypes. The genomes of BC3, BC4, and alloplasmic lines contained no microsatellite markers of the cultivated barley, whereas chromosomes of each homeologous group of common wheat were identified. In chromosomes of backcross progenies BC3, BC4, and alloplasmic lines yielded by backcrosses of hybrids and various common wheat cultivars, microsatellite markers of the parental wheat cultivars were shown to undergo recombination.


Russian Journal of Genetics | 2009

Features of alloplasmic wheat-barley substitution and addition lines (Hordeum marinum subsp. gussoneanum)-Triticum aestivum

L. A. Pershina; E. P. Devyatkina; L. I. Belova; N. V. Trubacheeva; V. S. Arbuzova; L. A. Kravtsova

Two alloplasmic wheat-barley substitution lines were studied: a line replaced at three pairs of chromosomes 1Hmar(1B), 5Hmar(5D), and 7Hmar(7D), and the disomic-substituted line 7Hmar(7D). The lines were constructed on the basis of individual plants from BC1F8 and BC2F6 progeny of barley-wheat hybrids (H. marinum subsp. gussoneanum Hudson (= H. geniculatum All.) (2n = 28) × T. aestivum L.) (2n = 42) (Pyrotrix 28), respectively. Moreover, the alloplasmic wheat-barley ditelosomic addition line 7HLmar isolated among plants from the BC1F6 progeny of a barley-wheat amphiploid was studied, which in this work corresponds to BC2F10 and BC2F11 progeny. It was ascertained that when grown in the field, these alloplasmic lines manifest stable self-fertility. Plants of the given lines are characterized by low height, shortened ears, the fewer number of stems and ears, and of spikelets in the ear, by decreased grain productivity and weight of 1000 grains, in comparison with the common wheat cultivar Pyrotrix 28. The inhibition of trait expression in alloplasmic wheat-barley substitution and addition lines may be connected not only with the influence of wild barley chromosomes functioning in the genotypic environment of common wheat, but also with the effect of the barley cytoplasm. The alloplasmic line with substitution of chromosomes 1Hmar(1B), 5Hmar(5D), and 7Hmar(7D) or the alloplasmic line 5HLmar with ditelosomic addition have, in comparison with the common wheat cultivar Pyrotrix 28, an increased grain protein content, which is explained by the effect of wild barley H. marinum subsp. gussoneanum chromosomes.


Russian Journal of Genetics | 2009

Production of alloplasmic and euplasmic wheat-barley ditelosomic substitution lines 7H1Lmar(7D) and analysis of the 18S/5S mitochondrial repeat in these lines

N. V. Trubacheeva; T. T. Efremova; E. D. Badaeva; L. A. Kravtsova; L. I. Belova; E. P. Devyatkina; L. A. Pershina

Alloplasmic lines of common wheat with disomic substitution of chromosome 7D for telocentric chromosome 7H1Lmar of barley H. marinum subsp. gussoneanum Hudson were isolated from the plants of generation BC3, produced as a result of backcrossing of barley-wheat hybrids H. marinum subsp. gussoneanum (2n = 28) × T. aestivum (2n = 42), Pyrotrix, cultivar, with 28 common wheat cultivars Pyrotrix 28 and Novosibirskaya 67. Chromosome substitution pattern was determined using SSR analysis and C-banding. In preliminary genomic in situ hybridization experiments, telocentric chromosomes were assigned to wild barley was established. In the BC3F8 generations of three alloplasmic lines with the 7H1Lmar(7D) substitution type the differences in fertility manifestation were observed: most of the L-32(1) plants were sterile, in line L-32(2) only sporadic plants were sterile, and line L-32(3) was fertile. Simultaneously with these experiments, using selfpollinated progeny of the hybrids obtained in crosses of common wheat cultivar Saratovskaya 29 (2n = 41), monosomic for chromosome 7D, with common wheat cultivar Pyrotrix 28 with addition of pair of telocentric chromosomes 7H1Lmar (7D) of barley H. marinum subsp. gussoneanum, euplasmic wheat-barley ditelosomic substitution 7H1Lmar (7D) lines were isolated. The lines obtained had normal fertility. PCR analysis of the 18S/5S mitochondrial repeat (hereafter, mtDNA sequence) in alloplasmic and euplasmic ditelosomic substitution lines 7H1Lmar(7D) was performed. In the plants from alloplasmic sterile line L-32(1), the sequences only of the barley (maternal) type were revealed, while the plants from alloplasmic fertile lines L-32(2) and L-32(3) demonstrated heteroplasmy (the presence of barley- and wheat-like sequences within one individual). In euplasmic ditelosomic substitution lines the presence of only wheat-like 18S/5S mitochondrial repeat sequences was observed. The results indicate that the presence of barley-like mtDNA sequences in alloplasmic substitution lines was not associated with the presence of barley chromosomes in their nuclear genomes.

Collaboration


Dive into the L. A. Pershina's collaboration.

Top Co-Authors

Avatar

N. V. Trubacheeva

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

L. A. Kravtsova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

E. P. Devyatkina

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

L. I. Belova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

E. D. Badaeva

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

V. K. Shumny

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

E. A. Salina

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

A. I. Shchapova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

O. M. Numerova

Russian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

T. S. Osadchaya

Russian Academy of Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge