P. R. Ferket
North Carolina State University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by P. R. Ferket.
Poultry Science | 2009
B. Baurhoo; P. R. Ferket; Xin Zhao
The effects of 2 levels of mannanoligosaccharide (MOS) in feed were compared with antibiotic growth promoters on growth performance, intestinal morphology, cecal and litter microbial populations, and carcass parameters in broilers raised in a sanitary environment. Dietary treatments included: 1) antibiotic growth promoter-free diet (control), 2) VIRG (diet 1 + 16.5 mg/kg of virginiamycin), 3) BACT (diet 1 + 55 mg/kg of bacitracin), 4) LMOS (diet 1 + 0.2% MOS), and 5) HMOS (diet 1 + 0.5% MOS). Birds were randomly assigned to 3 replicate pens/treatment (n = 55/pen). Body weight and feed intake were recorded weekly throughout 38 d. At d 14, 24, and 34, a 1-cm segment of duodenum, jejunum, and ileum was used in morphological analysis (n = 9 birds/d per treatment). At the same bird ages, cecal contents were assayed for lactobacilli, bifidobacteria, Salmonella, Campylobacter, and Escherichia coli, whereas litter was analyzed for Salmonella, Campylobacter, and E. coli. Carcass yields (breast fillet and tenders, thigh, drumstick, and wing) were determined at d 38. Body weight, feed conversion, and carcass yields did not differ among treatments. In contrast to birds fed VIRG or BACT, LMOS and HMOS consistently increased (P < 0.05) villi height and goblet cell number per villus in all intestinal segments at d 24 and 34. Bifidobacteria concentrations were higher (P < 0.05) in LMOS- and HMOS-fed birds at all time points. Birds and litter from all treatments were free of Salmonella. At d 14 and 24, cecal E. coli and Campylobacter counts were not different among treatments. In comparison to birds fed control, at d 34, BACT, LMOS, and HMOS significantly reduced (P < 0.05) cecal E. coli concentrations, whereas Campylobacter counts were reduced (P < 0.05) by VIRG, BACT, and LMOS. Litter bacterial counts were not altered by dietary treatments. In conclusion, under conditions of this study, MOS conferred intestinal health benefits to chickens by improving its morphological development and microbial ecology. But, there were no additional benefits of the higher MOS dosage.
Worlds Poultry Science Journal | 1997
M. T. Kidd; P. R. Ferket; J.D. Garlich
Betaine, a donor of labile methyl groups, can spare choline and methionine but cannot replace these compounds in poultry diets. Betaine is synthesized from choline by choline oxidase and it can don...
Worlds Poultry Science Journal | 1996
M. T. Kidd; P. R. Ferket; M. A. Qureshi
A major goal of many poultry producers is to attain good flock liveability. Historically, most poultry producers have manipulated environmental conditions and management to maximize bird health. In the past two decades there has been much research into nutritional regimes that improve bird health through immunomodulation. Commercial poultry environments contain ubiquitous micro-organisms that continuously challenge the immune system. Nutritional supplements that enhance immune system function may improve flock performance and be economically advantageous. This paper reviews the literature on zinc-methionine and the avian cellular immune system. Current knowledge of the effects of zinc on many animal models is reviewed and a hypothetical mechanism for the action of zinc-methionine on this system is discussed.
Science | 2013
Masato Asai; Shwetha Ramachandrappa; Maria Joachim; Yuan Shen; Rong Zhang; Nikhil Nuthalapati; Visali Ramanathan; David E. Strochlic; P. R. Ferket; Kirsten Linhart; Caroline Ho; Tatiana V. Novoselova; Sumedha Garg; Martin Ridderstråle; Claude Marcus; Joel N. Hirschhorn; Julia M. Keogh; Stephen O’Rahilly; Li F. Chan; Adrian J. L. Clark; I. Sadaf Farooqi; Joseph A. Majzoub
Accessory to Obesity? Melanocortin receptors are a family of cell membrane receptors that control diverse physiological functions. Mutations in the gene encoding melanocortin 4 receptor (MC4R) are a cause of familial early-onset obesity. Asai et al. (p. 275) studied the function of an accessory protein for MC4R signaling, MRAP2, and found that mice genetically deficient in MRAP2 develop severe obesity. Sequencing of MRAP2 in unrelated, severely obese humans revealed one individual with a clearly disruptive genetic variant, suggesting that MRAP2 mutations might also be a rare cause of human obesity. In a zebrafish model, Sebag et al. (p. 278) studied two paralogs of the MRAP2 accessory protein, one of which enhanced MC4R responsiveness to α–melanocyte-stimulating hormone, which regulates feeding and growth. Disruption of a protein required for effective signaling by a melanocortin receptor causes severe obesity in mice. Melanocortin receptor accessory proteins (MRAPs) modulate signaling of melanocortin receptors in vitro. To investigate the physiological role of brain-expressed melanocortin 2 receptor accessory protein 2 (MRAP2), we characterized mice with whole-body and brain-specific targeted deletion of Mrap2, both of which develop severe obesity at a young age. Mrap2 interacts directly with melanocortin 4 receptor (Mc4r), a protein previously implicated in mammalian obesity, and it enhances Mc4r-mediated generation of the second messenger cyclic adenosine monophosphate, suggesting that alterations in Mc4r signaling may be one mechanism underlying the association between Mrap2 disruption and obesity. In a study of humans with severe, early-onset obesity, we found four rare, potentially pathogenic genetic variants in MRAP2, suggesting that the gene may also contribute to body weight regulation in humans.
Poultry Science | 2012
Caimei Yang; G. T. Cao; P. R. Ferket; T. T. Liu; Lin Zhou; L. Zhang; Y. P. Xiao; Anguo Chen
Four hundred and fifty 1-d-old male Lingnan Yellow broiler chickens were used to investigate the effects of Clostridium butyricum on growth performance, immune function, and cecal microflora. The birds were randomly assigned to 5 treatments and offered the same antibiotic-free basal diets for 42 d. The treatments were as follows: no addition (control), 1 × 10(7) cfu C. butyricum/kg of diet (CB1), 2 × 10(7) cfu C. butyricum/kg of diet (CB2), 3 × 10(7) cfu C. butyricum/kg of diet (CB3), and 10 mg of colistine sulfate/kg of diet (antibiotic). Birds fed either CB2 or antibiotic had greater overall BW than those in the control group. During d 1 to 7, d 21 to 42, and d 1 to 42, birds fed either CB2 or CB3 or the antibiotic diet had greater ADG compared with those in the control group. No significant differences were observed in BW or ADG among the CB2, CB3, and antibiotic groups. Birds fed the CB2 or CB3 diet had greater concentrations of IgA and IgG in the serum from d 14 to 42 and greater IgM in the serum from d 21 to 42 than those in the control group. Birds fed the CB3 diet had a greater concentration of complement component 3 in the serum than those in the control group from d 7 to 42. Dietary C. butyricum decreased (P < 0.05) Escherichia coli in cecal contents on d 14 and 42, and both CB2 and CB3 decreased (P < 0.05) cecal Salmonella and Clostridium perfringen from d 14 to 42 compared with the control. Broilers fed either CB2 or CB3 had greater cecal Lactobacillus and Bifidobacterium counts from d 21 to 42, and birds fed C. butyricum had greater cecal C. butyricum counts during the whole period compared with those in the control group. The results indicate that C. butyricum promotes growth performance and immune function and benefits the balance of the intestinal microflora in broiler chickens.
Worlds Poultry Science Journal | 2008
J. E. de Oliveira; Z. Uni; P. R. Ferket
Growth performance and meat yield of commercial broilers and turkeys has improved linearly each year during the past four decades (Havenstein et al., 2003b; Havenstein et al., 2003a; Havenstein et al., 2007), and this trend is likely to continue in the future as new technologies in genetics, biotechnology and developmental biology are adopted by the poultry industry. As the time it takes meat birds to achieve market size decreases, the period of embryonic development becomes a greater proportion of a birds productive life. Therefore, incubation and embryonic development towards hatch is of greater relative importance to the successful rearing of meat poultry than ever before (Hulet 2007; Foye et al., 2007b). Consequently, anything that supports or limits growth and development during the incubation period will have a marked effect on overall growth performance and health of modern strains of meat poultry. Many poultry researchers now realize that future gains in genetic and production potential of poultry will come from advancements made during the incubation period and embryogenesis (Elibol et al., 2002; Peebles et al., 2005; Christensen et al., 2007; Collin et al., 2007; Leksrisompong et al., 2007). The urgent need to explore and understand the biology of incubation has been emphasised by several symposia: two held at the annual conference of the U.S. Poultry Science Society (July 2006-Edmonton, Alberta, Canada “Managing the embryo for performance”, and July 2007-San Antonio, TX Informal Nutrition Meeting “The impact of imprinting on biological and economical performance in animals”), and one held by the European Federation of World Poultry Science Society (October 2007-Berlin, Germany “Fundamental physiology and perinatal development in poultry), which were specifically devoted to demonstrating the importance of the embryonic period on poultry performance. This review will summarise the metabolic events and pathways in four of the most active tissues of embryos during the period just prior to hatch, and the hormonal control that coordinates the marked changes as the embryo prepares for its post-hatch life.
Poultry Science | 2008
F. B. O. Santos; B. W. Sheldon; A. A. Santos; P. R. Ferket
Salmonella colonization in poultry may be influenced by grain type and particle size. Broilers reared either in nonlitter cage-based housing or in a conventionally floored litter house from 0 to 42 d were assigned to 1 of 4 dietary treatments: 1) ground corn-soybean meal (C, 560 microm), 2) coarsely ground corn-soybean meal (CC, >1,700 microm), 3) ground triticale-soybean meal (T, 560 microm), or 4) whole triticale-soybean meal (WT). A 4-strain cocktail of Salmonella enterica was orally gavaged into each chick at placement. Growth performance, cecal and fecal Salmonella populations, gizzard and proventriculus pH, intestinal size, jejunum histomorphometry, and carcass yields were measured. Broilers responded differently to the dietary treatments according to the housing system used. At 42 d, birds reared on litter and fed ground grain had greater BW than those fed coarse grain (2.87 vs. 2.71 kg), whereas cage-reared broilers fed ground triticale were heavier than those fed corn (2.75 vs. 2.64 kg). Broilers raised on litter had a better feed conversion ratio than those raised in cages (1.71 vs. 1.81 g/g). Independent of the housing system, relative eviscerated carcass weights of birds fed T and C were heavier than those of CC- and WT-fed broilers (762 vs. 752 g/kg). Generally, the jejunum villus area and mucosal depth were larger, whereas the small intestine was lighter and shorter in broilers raised on litter. Relative gizzard weights of broilers raised on litter and fed the coarser diets were heavier than those of broilers reared in cages and fed finely ground diets. Feeding whole or coarsely ground grains decreased cecal Salmonella populations in 42-d-old broilers (3.8, 3.9, 4.4, and 4.4 log most probable number/g for CC, WT, C, and T, respectively). Additionally, 42-d-old broilers reared on litter had lower cecal Salmonella populations than those in cages (3.8 vs. 4.4 log most probable number/g). In conclusion, as a feed ingredient, triticale is a good alternative to corn, resulting in improved BW and reduced Salmonella colonization. Broilers raised on litter may have achieved lower cecal Salmonella populations than caged birds because access to litter may have modulated the intestinal microflora by increasing competitive exclusion microorganisms, which discouraged Salmonella colonization.
Biological Trace Element Research | 1994
M. T. Kidd; M. A. Qureshi; P. R. Ferket; L. N. Thomas
The ability of dietary zinc-methionine (Zn-Met) to enhance mononuclear-phagocytic function againstSalmonella arizona andenteritids was investigated in young turkeys. Feed/gain and body wt gain at 21 d of age were not affected by Zn-Met. The addition of 30 or 45 ppm Zn from Zn-Met to a Zn adequate diet significantly increased cutaneous basophil hypersensitivity to phytohemagglutinin-P. The clearance of intravenously administeredS. enteritidis from blood was not affected by 30 ppm of supplemental Zn from Zn-Met. However, 30 ppm Zn from Zn-Met increased the reduction of intravenously administeredS. arizona from spleen. Percentages of myeloid and mononuclear-phagocytic cells before and afterS. enteritidis infection were not affected by supplemental Zn-Met. Turkeys supplemented with Zn-Met showed enhanced in vitro phagocytosis ofS. enteritidis by Sephadex-elicited abdominal exudate cells. The phagocytosis ofS. arizona was unaffected by Zn-Met.
Poultry Science | 2009
P. R. Ferket; E. O. Oviedo-Rondón; P. L. Mente; D. V. Bohórquez; A. A. Santos; J. L. Grimes; J. D. Richards; J. J. Dibner; V. Felts
Leg problems and resulting mortality can exceed 1% per week in turkey toms starting at approximately 15 wk of age. Dietary supplementation of organic trace minerals (MIN) and 25-hydroxycholecalciferol (HyD) may improve performance, decrease incidence of leg abnormalities, and increase bone strength. Nicholas 85X700 toms were assigned to 4 treatments consisting of a factorial arrangement of 2 concentrations of MIN (0 and 0.1% of Mintrex P(Se), which adds 40, 40, 20, and 0.3 mg/kg of Zn, Mn, Cu, and Se, respectively) and 2 concentrations of HyD (0 and 92 microg/kg of HyD). Diets were formulated to be equal in nutrient content and fed ad libitum as 8 feed phases. Feed intake and BW were measured at 6, 12, 15, 17, and 20 wk of age. Valgus, varus, and shaky leg defects were determined at 12, 15, 17, and 20 wk of age. Tibia and femur biomechanical properties were evaluated by torsion and bending tests at 17 wk of age. There were no treatment effects on BW. Only MIN significantly improved feed conversion ratio through to 20 wk of age. Cumulative mortality at 3 wk of age was greater among the MIN birds, but it was lower by 20 wk (P = 0.085). The MIN decreased the incidence of varus defects at 17 wk of age; shaky leg at 12, 15, and 17 wk of age; and valgus defects at 15, 17, and 20 wk of age. There were no MIN x HyD interaction effects on individual gait problems. Maximum load and the bending stress required for tibias to break in a 4-point assay were increased with MIN supplementation, especially when HyD was also added. Maximum shear stress at failure of femoral bones in a torsion assay was increased by supplementation with both MIN and HyD together. Dietary supplementation of MIN and HyD may improve biomechanical properties of bones. Dietary MIN supplementation may improve feed conversion of turkeys, likely by decreasing leg problems.
Journal of Animal Science | 2012
Caimei Yang; P. R. Ferket; Qihua Hong; J. Zhou; G. T. Cao; Lin Zhou; Anguo Chen
A total of 180 weanling pigs (21 ± 3 d of age; 5.98 ± 0.04 kg) were used to investigate the effect of chito-oligosaccharide (COS) on growth performance, intestinal barrier function, intestinal morphology, and cecal microflora. Based on initial BW, gender and litter, the pigs were given 5 treatments during a 14-d feeding experiment, including a basal diet (control), 3 diets with COS supplementation (200, 400, or 600 mg/kg), and a diet with colistin sulfate (CSE) supplementation (20 mg/kg). Six randomly selected pigs from each treatment were used to collect serum, duodenal, jejunal, ileal, and cecal samples on d 7 and 14 postweaning. From d 1 to 7 postweaning, pigs fed COS or CSE had greater ADG and ADFI compared with the control pigs. From d 1 to 14, diets with either 400 or 600 mg/kg COS, or 20 mg/kg CSE increased (P < 0.05) ADG and G:F compared with the control diet. No significant differences were observed in ADG, ADFI, and G:F between the pigs fed COS and CSE. Pigs fed either 400 or 600 mg/kg COS, or 20 mg/kg CSE had less (P < 0.05) diamine oxidase (DAO) in the serum, but greater concentration of (P < 0.05) DAO in jejunal mucosa, than the control pigs on d 7 postweaning. Treatments did not affect villous height and crypt depth of the duodenum, jejunum, or ileum. Pigs fed COS at 400 mg/kg had greater (P < 0.05) concentration of Bifidobacteria and Lactobacilli in the cecum than pigs fed the control diet and CSE diet on d 7 postweaning. Supplementation of COS or CSE decreased (P < 0.05) the population of cecal Staphylococcus aureus compared with the control diet on d 7 postweaning. The number of cecal Bifidobacteria in pigs fed 600 mg/kg COS was greater (P < 0.05) than that of pigs fed the control diet or CSE diet on d 14 postweaning. No significant differences were observed in Escherichia coli counts in the cecum among treatments. The present results indicate that dietary supplementation of COS at 400 or 600 mg/kg promotes growth performance and improves gut barrier function, increases the population of Bifidobacteria and Lactobacilli, and decreases S. aureus in the cecum of weanling pigs.