Ece Öztürk
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Ece Öztürk.
Annals of Biomedical Engineering | 2017
Michael Müller; Ece Öztürk; Øystein Arlov; Paul Gatenholm; Marcy Zenobi-Wong
One of the challenges of bioprinting is to identify bioinks which support cell growth, tissue maturation, and ultimately the formation of functional grafts for use in regenerative medicine. The influence of this new biofabrication technology on biology of living cells, however, is still being evaluated. Recently we have identified a mitogenic hydrogel system based on alginate sulfate which potently supports chondrocyte phenotype, but is not printable due to its rheological properties (no yield point). To convert alginate sulfate to a printable bioink, it was combined with nanocellulose, which has been shown to possess very good printability. The alginate sulfate/nanocellulose ink showed good printing properties and the non-printed bioink material promoted cell spreading, proliferation, and collagen II synthesis by the encapsulated cells. When the bioink was printed, the biological performance of the cells was highly dependent on the nozzle geometry. Cell spreading properties were maintained with the lowest extrusion pressure and shear stress. However, extruding the alginate sulfate/nanocellulose bioink and chondrocytes significantly compromised cell proliferation, particularly when using small diameter nozzles and valves.
Advanced Functional Materials | 2016
Ece Öztürk; Øystein Arlov; Seda Aksel; Ling Li; David M. Ornitz; Gudmund Skjåk-Bræk; Marcy Zenobi-Wong
Deciphering the roles of chemical and physical features of the extracellular matrix (ECM) is vital for developing biomimetic materials with desired cellular responses in regenerative medicine. Here, we demonstrate that sulfation of biopolymers, mimicking the proteoglycans in native tissues, induces mitogenicity, chondrogenic phenotype, and suppresses catabolic activity of chondrocytes, a cell type that resides in a highly sulfated tissue. We show through tunable modification of alginate that increased sulfation of the microenvironment promotes FGF signaling-mediated proliferation of chondrocytes in a three-dimensional (3D) matrix independent of stiffness, swelling, and porosity. Furthermore, we show for the first time that a biomimetic hydrogel acts as a 3D signaling matrix to mediate a heparan sulfate/heparin-like interaction between FGF and its receptor leading to signaling cascades inducing cell proliferation, cartilage matrix production, and suppression of de-differentiation markers. Collectively, this study reveals important insights on mimicking the ECM to guide self-renewal of cells via manipulation of distinct signaling mechanisms.
Osteoarthritis and Cartilage | 2013
Rami Mhanna; Ece Öztürk; P. Schlink; Marcy Zenobi-Wong
OBJECTIVE To determine the in vitro conditions which promote expression of superficial zone protein (SZP). METHODS Chondrocytes from 6-month-old calves were expanded in monolayer culture and the expression of SZP in alginate bead and monolayer culture was quantified with quantitative real time-polymerase chain reaction (qRT-PCR) and immunostaining. The effect of oxygen tension on SZP expression was determined by qRT-PRC analysis of cells cultured in two dimension (2D) and three dimension (3D) under hypoxic (1% pO2) or normoxic (21% pO2) conditions. Finally, to examine the effect of cyclic tensile strain on expression of SZP in 2D and 3D cultures, chondrocytes encapsulated in alginate beams or seeded on type I collagen coated polydimethylsiloxane (PDMS) chambers were subjected to 5% strain at 1 Hz, 2 h/day for 4 days or 2 h at the fourth day of culture and mRNA levels were quantified. RESULTS Bovine chondrocytes in monolayer showed a drastic decrease in SZP expression, similar in trend to the commonly reported downregulation of type II collagen (Col2). Chondrocytes embedded in alginate beads for 4 days re-expressed SZP but not Col2. SZP expression was higher under normoxic conditions whereas Col2 was upregulated only in alginate beads under hypoxic conditions. Cyclic mechanical strain showed a tendency to upregulate mRNA levels of SZP. CONCLUSIONS A microenvironment encompassing a soft encapsulation material and 21% oxygen is sufficient for fibroblastic chondrocytes to re-express SZP. These results serve as a guideline for the design of stratified engineered articular cartilage and suggest that microenvironmental cues (oxygen tension level) strongly influence the pattern of SZP expression in vivo.
Advanced Healthcare Materials | 2016
Florian A. Formica; Ece Öztürk; Samuel C. Hess; Wendelin J. Stark; Katharina Maniura-Weber; Markus Rottmar; Marcy Zenobi-Wong
A true biomimetic of the cartilage extracellular matrix (ECM) could greatly contribute to our ability to regenerate this tissue in a mechanically demanding, often inflamed environment. Articular cartilage is a composite tissue made of cells and fibrillar proteins embedded in a hydrophilic polymeric meshwork. Here, a polyanionic functionalized alginate is used to mimic the glycosaminoglycan component of the native ECM. To create the fibrillar component, cryoelectrospinning of poly(ε-caprolactone) on a -78 °C mandrel, subsequently treated by O2 plasma, is used to create a stable, ultraporous and hydrophillic nanofiber network. In this study, cell-laden, fiber-reinforced composite scaffolds thicker than 1.5 mm can be created by infiltrating a chondrocyte/alginate solution into the fiber mesh, which is then physically cross-linked. The fibrillar component significantly reinforces the chondroinductive, but mechanically weak sulfated alginate hydrogels. This allows the production of a glycosaminoglycan- and collagen type II-rich matrix by the chondrocytes as well as survival of the composite in vivo. To further enhance the system, the electrospun component is loaded with dexamethasone, which protected the cells from an IL-1β-mediated inflammatory insult.
Scientific Reports | 2017
Ece Öztürk; Stefanie Hobiger; Evelin Despot-Slade; Michael Pichler; Marcy Zenobi-Wong
Cartilage tissue is avascular and hypoxic which regulates chondrocyte phenotype via stabilization of HIFs. Here, we investigated the role of hypoxia and HIFs in regulation of Rho and canonical Wnt signaling in chondrocytes. Our data demonstrates that hypoxia controls the expression of RhoA in chondrocytes in a context-dependent manner on the culturing conditions. Within a 3D microenvironment, hypoxia suppresses RhoA on which hypoxia-driven expression of chondrogenic markers depends. Conversely, hypoxia leads to upregulation of RhoA in chondrocytes on 2D with a failure in re-expression of chondrogenic markers. Similarly to RhoA, hypoxic regulation of Wnt/β-catenin signaling depends on the microenvironment. Hypoxia downregulates β-catenin within 3D hydrogels whereas it causes a potent increase on 2D. Hypoxia-induced suppression of canonical Wnt signaling in 3D contributes to the promotion of chondrogenic phenotype as induction of Wnt signaling abrogates the hypoxic re-differentiation of chondrocytes. Inhibiting Wnt/β-catenin signaling via stabilization of Axin2 leads to a synergistic enhancement of hypoxia-induced expression of chondrogenic markers. The effects of hypoxia on Rho and Wnt/β-catenin signaling are HIF-dependent as stabilizing HIFs under normoxia revealed similar effects on chondrocytes. The study reveals important insights on hypoxic signaling of chondrocytes and how hypoxia regulates cellular mechanisms depending on the cellular microenvironment.
European Cells & Materials | 2017
Øystein Arlov; Ece Öztürk; Matthias Steinwachs; Gudmund Skjåk-Bræk; Marcy Zenobi-Wong
Loss of articular cartilage from ageing, injury or degenerative disease is commonly associated with inflammation, causing pain and accelerating degradation of the cartilage matrix. Sulphated glycosaminoglycans (GAGs) are involved in the regulation of immune responses in vivo, and analogous polysaccharides are currently being evaluated for tissue engineering matrices to form a biomimetic environment promoting tissue growth while suppressing inflammatory and catabolic activities. Here, we characterise physical properties of sulphated alginate (S-Alg) gels for use in cartilage engineering scaffolds, and study their anti-inflammatory effects on encapsulated chondrocytes stimulated with IL-1β. Sulphation resulted in decreased storage modulus and increased swelling of alginate gels, whereas mixing highly sulphated alginate with unmodified alginate resulted in improved mechanical properties compared to gels from pure S-Alg. S-Alg gels showed extensive anti-inflammatory and anti-catabolic effects on encapsulated chondrocytes induced by IL-1β. Cytokine-stimulated gene expression of pro-inflammatory markers IL-6, IL-8, COX-2 and aggrecanase ADAMTS-5 were significantly lower in the sulphated gels compared to unmodified alginate gels. Moreover, sulphation of the microenvironment suppressed the protein expression of COX-2 and NF-κB as well as the activation of NF-κB and p38-MAPK. The sulphated alginate matrices were found to interact with IL-1β, and proposed to inhibit inflammatory induction by sequestering cytokines from their receptors. This study shows promising potential for sulphated alginates in biomimetic tissue engineering scaffolds, by reducing cytokine-mediated inflammation and providing a protective microenvironment for encapsulated cells.
Experimental Cell Research | 2017
Ece Öztürk; Evelin Despot-Slade; Michael Pichler; Marcy Zenobi-Wong
Abstract De‐differentiation comprises a major drawback for the use of autologous chondrocytes in cartilage repair. Here, we investigate the role of RhoA and canonical Wnt signaling in chondrocyte phenotype. Chondrocyte de‐differentiation is accompanied by an upregulation and nuclear localization of RhoA. Effectors of canonical Wnt signaling including &bgr;‐catenin and YAP/TAZ are upregulated in de‐differentiating chondrocytes in a Rho‐dependent manner. Inhibition of Rho activation with C3 transferase inhibits nuclear localization of RhoA, induces expression of chondrogenic markers on 2D and enhances the chondrogenic effect of 3D culturing. Upregulation of chondrogenic markers by Rho inhibition is accompanied by loss of canonical Wnt signaling markers in 3D or on 2D whereas treatment of chondrocytes with Wnt‐3a abrogates this effect. However, induction of canonical Wnt signaling inhibits chondrogenic markers on 2D but enhances chondrogenic re‐differentiation on 2D with C3 transferase or in 3D. These data provide insights on the context‐dependent role of RhoA and Wnt signaling in de‐differentiation and on mechanisms to induce chondrogenic markers for therapeutic approaches. Graphical abstract Figure. No caption available. HighlightsRhoA upregulation and nuclearization accompanies chondrocyte de‐differentiation.De‐differentiation causes Rho‐mediated upregulation of &bgr;‐catenin and YAP/TAZ.Inhibition of Rho activation enables regain of chondrocyte phenotype.Canonical Wnt signaling has a context‐dependent role on chondrogenic markers.
European Cells & Materials | 2012
Deborah Studer; Christopher Millan; Ece Öztürk; Katharina Maniura-Weber; Marcy Zenobi-Wong
Tissue Engineering Part A | 2014
Rami Mhanna; Ece Öztürk; Queralt Vallmajo-Martin; Christopher Millan; Michael Müller; Marcy Zenobi-Wong
Biomaterials | 2013
Markus Thiersch; Markus Rimann; Vasiliki Panagiotopoulou; Ece Öztürk; Thomas Biedermann; Marcus Textor; Tessa Lühmann; Heike Hall
Collaboration
Dive into the Ece Öztürk's collaboration.
Swiss Federal Laboratories for Materials Science and Technology
View shared research outputsSwiss Federal Laboratories for Materials Science and Technology
View shared research outputs