Eckhart Spalding
University of Arizona
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Eckhart Spalding.
Nature | 2015
Stephanie Sallum; Katherine B. Follette; J. A. Eisner; Laird M. Close; P. Hinz; Kaitlin M. Kratter; Jared R. Males; A. Skemer; Bruce A. Macintosh; Peter G. Tuthill; Vanessa P. Bailey; Denis Defrere; Katie M. Morzinski; Timothy J. Rodigas; Eckhart Spalding; A. Vaz; Alycia J. Weinberger
Exoplanet detections have revolutionized astronomy, offering new insights into solar system architecture and planet demographics. While nearly 1,900 exoplanets have now been discovered and confirmed, none are still in the process of formation. Transition disks, protoplanetary disks with inner clearings best explained by the influence of accreting planets, are natural laboratories for the study of planet formation. Some transition disks show evidence for the presence of young planets in the form of disk asymmetries or infrared sources detected within their clearings, as in the case of LkCa 15 (refs 8, 9). Attempts to observe directly signatures of accretion onto protoplanets have hitherto proven unsuccessful. Here we report adaptive optics observations of LkCa 15 that probe within the disk clearing. With accurate source positions over multiple epochs spanning 2009–2015, we infer the presence of multiple companions on Keplerian orbits. We directly detect Hα emission from the innermost companion, LkCa 15 b, evincing hot (about 10,000 kelvin) gas falling deep into the potential well of an accreting protoplanet.
The Astrophysical Journal | 2016
Denis Defrere; Philip M. Hinz; B. Mennesson; William F. Hoffmann; R. Millan-Gabet; A. Skemer; Vanessa P. Bailey; W. C. Danchi; E. Downey; O. Durney; P. Grenz; John M. Hill; T. McMahon; M. Montoya; Eckhart Spalding; A. Vaz; Olivier Absil; P. Arbo; H. Bailey; Guido Brusa; G. Bryden; Simone Esposito; Andras Gaspar; Christopher A. Haniff; Grant M. Kennedy; Jarron M. Leisenring; Lindsay Marion; M. Nowak; Enrico Pinna; Keith Powell
National Aeronautics and Space Administration, Exoplanet Exploration Program; National Aeronautics and Space Administration; European Union through ERC [279973]
The Astronomical Journal | 2018
S. Ertel; Denis Defrere; P. Hinz; B. Mennesson; Grant M. Kennedy; W. C. Danchi; Christopher R. Gelino; John M. Hill; William F. Hoffmann; G. H. Rieke; Andrew Shannon; Eckhart Spalding; Jordan Stone; A. Vaz; Alycia J. Weinberger; P. Willems; Olivier Absil; P. Arbo; Vanessa P. Bailey; C. A. Beichman; G. Bryden; E. Downey; O. Durney; Simone Esposito; Andras Gaspar; P. Grenz; Christopher A. Haniff; Jarron M. Leisenring; Lindsay Marion; T. McMahon
The HOSTS (Hunt for Observable Signatures of Terrestrial Systems) survey searches for dust near the habitable zones (HZs) around nearby, bright main sequence stars. We use nulling interferometry in N band to suppress the bright stellar light and to probe for low levels of HZ dust around the 30 stars observed so far. Our overall detection rate is 18%, including four new detections, among which are the first three around Sun-like stars and the first two around stars without any previously known circumstellar dust. The inferred occurrence rates are comparable for early type and Sun-like stars, but decrease from 60 (+16/-21)% for stars with previously detected cold dust to 8 (+10/-3)% for stars without such excess, confirming earlier results at higher sensitivity. For completed observations on individual stars, our sensitivity is five to ten times better than previous results. Assuming a lognormal excess luminosity function, we put upper limits on the median HZ dust level of 13 zodis (95% confidence) for a sample of stars without cold dust and of 26 zodis when focussing on Sun-like stars without cold dust. However, our data suggest that a more complex luminosity function may be more appropriate. For stars without detectable LBTI excess, our upper limits are almost reduced by a factor of two, demonstrating the strength of LBTI target vetting for future exo-Earth imaging missions. Our statistics are so far limited and extending the survey is critical to inform the design of future exo-Earth imaging surveys.
Nature | 2017
K. de Kleer; M. F. Skrutskie; Jarron M. Leisenring; Ashley Gerard Davies; Albert Rudolph Conrad; I. de Pater; A. Resnick; Vanessa P. Bailey; Denis Defrere; P. Hinz; Andrew J. Skemer; Eckhart Spalding; A. Vaz; C. Veillet; Charles E. Woodward
The Jovian moon Io hosts the most powerful persistently active volcano in the Solar System, Loki Patera. The interior of this volcanic, caldera-like feature is composed of a warm, dark floor covering 21,500 square kilometres surrounding a much cooler central ‘island’. The temperature gradient seen across areas of the patera indicates a systematic resurfacing process, which has been seen to occur typically every one to three years since the 1980s. Analysis of past data has indicated that the resurfacing progressed around the patera in an anti-clockwise direction at a rate of one to two kilometres per day, and that it is caused either by episodic eruptions that emplace voluminous lava flows or by a cyclically overturning lava lake contained within the patera. However, spacecraft and telescope observations have been unable to map the emission from the entire patera floor at sufficient spatial resolution to establish the physical processes at play. Here we report temperature and lava cooling age maps of the entire patera floor at a spatial sampling of about two kilometres, derived from ground-based interferometric imaging of thermal emission from Loki Patera obtained on 8 March 2015 ut as the limb of Europa occulted Io. Our results indicate that Loki Patera is resurfaced by a multi-phase process in which two waves propagate and converge around the central island. The different velocities and start times of the waves indicate a non-uniformity in the lava gas content and/or crust bulk density across the patera.
Proceedings of SPIE | 2016
Denis Defrere; Philip M. Hinz; E. Downey; Michael C. Böhm; W. C. Danchi; O. Durney; S. Ertel; John M. Hill; William F. Hoffmann; B. Mennesson; R. Millan-Gabet; M. Montoya; J.-U. Pott; Andrew J. Skemer; Eckhart Spalding; Jordan Stone; A. Vaz
The Large Binocular Telescope Interferometer uses a near-infrared camera to measure the optical path length variations between the two AO-corrected apertures and provide high-angular resolution observations for all its science channels (1.5-13 microns). There is however a wavelength dependent component to the atmospheric turbulence, which can introduce optical path length errors when observing at a wavelength different from that of the fringe sensing camera. Water vapor in particular is highly dispersive and its effect must be taken into account for high-precision infrared interferometric observations as described previously for VLTI/MIDI or the Keck Interferometer Nuller. In this paper, we describe the new sensing approach that has been developed at the LBT to measure and monitor the optical path length fluctuations due to dry air and water vapor separately. After reviewing the current performance of the system for dry air seeing compensation, we present simultaneous H-, K-, and N-band observations that illustrate the feasibility of our feedforward approach to stabilize the path length fluctuations seen by the LBTI nuller.
Proceedings of SPIE | 2015
Denis Defrere; P. Hinz; A. Skemer; Vanessa P. Bailey; E. Downey; O. Durney; J. A. Eisner; John M. Hill; William F. Hoffmann; Jarron M. Leisenring; T. McMahon; M. Montoya; Eckhart Spalding; Jordan Stone; A. Vaz; Olivier Absil; Simone Esposito; Matthew A. Kenworthy; B. Mennesson; R. Millan-Gabet; M. Nelson; Alfio Puglisi; M. F. Skrutskie; John C. Wilson
The Large Binocular Telescope Interferometer (LBTI) is a strategic instrument of the LBT designed for highsensitivity, high-contrast, and high-resolution infrared (1.5-13 μm) imaging of nearby planetary systems. To carry out a wide range of high-spatial resolution observations, it can combine the two AO-corrected 8.4-m apertures of the LBT in various ways including direct (non-interferometric) imaging, coronagraphy (APP and AGPM), Fizeau imaging, non-redundant aperture masking, and nulling interferometry. It also has broadband, narrowband, and spectrally dispersed capabilities. In this paper, we review the performance of these modes in terms of exoplanet science capabilities and describe recent instrumental milestones such as first-light Fizeau images (with the angular resolution of an equivalent 22.8-m telescope) and deep interferometric nulling observations.
arXiv: Instrumentation and Methods for Astrophysics | 2018
Eckhart Spalding; Phil Hinz; S. Ertel; Jordan Stone; Erin Maier
The Large Binocular Telescope Interferometer (LBTI) can perform Fizeau interferometry in the focal plane, which accesses spatial information out to the LBTs full 22.7-m edge-to-edge baseline. This mode has previously been used to obtain science data, but has been limited to observations where the optical path difference (OPD) between the two beams is not controlled, resulting in unstable fringes on the science detectors. To maximize the science return, we are endeavoring to stabilize the OPD and tip-tilt variations and make the LBTI Fizeau mode optimized and routine. Here we outline the optical configuration of LBTIs Fizeau mode and our strategy for commissioning this observing mode.
arXiv: Earth and Planetary Astrophysics | 2018
S. Ertel; Phil Hinz; Denis Defrere; B. Mennesson; Grant M. Kennedy; Alycia J. Weinberger; Willems A. Phillip; Olivier Absil; P. Arbo; Vanessa P. Bailey; Charles A. Beichman; G. Bryden; Enrico Pinna; Jennifer Power; Alfio Puglisi; Andrew Shannon; W. C. Danchi; Christopher R. Gelino; John M. Hill; William F. Hoffman; G. H. Rieke; Eckhart Spalding; Jordan Stone; A. Vaz; E. Downey; Oliver Durney; Simone Esposito; Andras Gaspar; Paul Grenz; Christopher A. Haniff
The presence of large amounts of dust in the habitable zones of nearby stars is a significant obstacle for future exo-Earth imaging missions. We executed the HOSTS (Hunt for Observable Signatures of Terrestrial Systems) survey to determine the typical amount of such exozodiacal dust around a sample of nearby main sequence stars. The majority of the data have been analyzed and we present here an update of our ongoing work. Nulling interferometry in N band was used to suppress the bright stellar light and to detect faint, extended circumstellar dust emission. We present an overview of the latest results from our ongoing work. We find seven new N band excesses in addition to the high confidence confirmation of three that were previously known. We find the first detections around Sun-like stars and around stars without previously known circumstellar dust. Our overall detection rate is 23%. The inferred occurrence rate is comparable for early type and Sun-like stars, but decreases from 71+11 -20% for stars with previously detected mid- to far-infrared excess to 11+9 -4% for stars without such excess, confirming earlier results at high confidence. For completed observations on individual stars, our sensitivity is five to ten times better than previous results. Assuming a lognormal luminosity function of the dust, we find upper limits on the median dust level around all stars without previously known mid to far infrared excess of 11.5 zodis at 95% confidence level. The corresponding upper limit for Sun-like stars is 16 zodis. An LBTI vetted target list of Sun-like stars for exo-Earth imaging would have a corresponding limit of 7.5 zodis. We provide important new insights into the occurrence rate and typical levels of habitable zone dust around main sequence stars. Exploiting the full range of capabilities of the LBTI provides a critical opportunity for the detailed characterization of a sample of exozodiacal dust disks to understand the origin, distribution, and properties of the dust.
Proceedings of SPIE | 2016
Steph Sallum; J. A. Eisner; Laird M. Close; Philip M. Hinz; Katherine B. Follette; Kaitlin M. Kratter; Andrew J. Skemer; Vanessa P. Bailey; Runa Briguglio; Denis Defrere; Bruce A. Macintosh; Jared R. Males; Katie M. Morzinski; Alfio Puglisi; Timothy J. Rodigas; Eckhart Spalding; Peter G. Tuthill; A. Vaz; Alycia J. Weinberger; Marco Xomperio
Transition disks, protoplanetary disks with inner clearings, are promising objects in which to directly image forming planets. The high contrast imaging technique of non-redundant masking is well posed to detect planetary mass companions at several to tens of AU in nearby transition disks. We present non-redundant masking observations of the T Cha and LkCa 15 transition disks, both of which host posited sub-stellar mass companions. However, due to a loss of information intrinsic to the technique, observations of extended sources (e.g. scattered light from disks) can be misinterpreted as moving companions. We discuss tests to distinguish between these two scenarios, with applications to the T Cha and LkCa 15 observations. We argue that a static, forward-scattering disk can explain the T Cha data, while LkCa 15 is best explained by multiple orbiting companions.
The Astrophysical Journal | 2018
Jan-Torge Schindler; Xiaohui Fan; Ian D. McGreer; Jinyi Yang; Feige Wang; Richard Green; Nicolas Garavito-Camargo; Yun-Hsin Huang; Christine O’Donnell; Anna Patej; Ragadeepika Pucha; Jon M. Rees; Eckhart Spalding
U.S. NSF [AST 15-15115]; NASA ADAP grant [NNX17AF28G]; National Aeronautics and Space Administration; National Science Foundation; Alfred P. Sloan Foundation; U.S. Department of Energy Office of Science; Center for High-Performance Computing at the University of Utah; Brazilian Participation Group; Carnegie Institution for Science; Carnegie Mellon University; Chilean Participation Group; French Participation Group; Harvard-Smithsonian Center for Astrophysics; Instituto de Astrofsica de Canarias; Johns Hopkins University; Kavli Institute for the Physics and Mathematics of the Universe (IPMU)/University of Tokyo; Lawrence Berkeley National Laboratory; Leibniz Institut fur Astrophysik Potsdam (AIP); Max-Planck-Institut fur Astronomie (MPIA Heidelberg); Max-Planck-Institut fur Astrophysik (MPA Garching); Max-Planck-Institut fur Extraterrestrische Physik (MPE); National Astronomical Observatories of China; New Mexico State University; New York University; University of Notre Dame; Observatrio Nacional/MCTI; Ohio State University; Pennsylvania State University; Shanghai Astronomical Observatory; United Kingdom Participation Group; Universidad Nacional Autnoma de Mexico; University of Arizona; University of Colorado Boulder; University of Oxford; University of Portsmouth; University of Utah; University of Virginia; University of Washington; University of Wisconsin; Vanderbilt University; Yale University