Edith Rojas-Anaya
National Autonomous University of Mexico
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Edith Rojas-Anaya.
Vaccine | 2012
Elizabeth Loza-Rubio; Edith Rojas-Anaya; Juan López; María Teresa de Jesús Olivera-Flores; Miguel A. Gómez-Lim; Graciela Tapia-Pérez
The introduction of exogenous genes into plants permits the development of a new generation of biological products, i.e., edible vaccines. Cereals, especially maize, have been the systems of choice for the expression of antigenic proteins because the proteins can be expressed at high levels in the kernel and stored for prolonged periods without excessive deterioration. The utilization of plant-derived antigens for oral delivery provides an alternative strategy for the control of pathogens in animals compared to the current vaccine administration methods, such as injection. However, there is some doubt about the efficacy of these types of vaccines in polygastric animals due to the features of their digestive system. Here, we report the efficacy of an edible vaccine against rabies evaluated in sheep. Kernels containing different doses of G protein (0.5, 1, 1.5 and 2mg) were given in a single dose by the oral route. Cumulative survival was better in groups that received 2mg of G protein and for the positive control (inactivated rabies vaccine); this observation was supported by the presence of neutralizing antibodies. Animals in the control group died after challenge. The degree of protection achieved for 2mg of G protein was comparable to that conferred by a commercial vaccine. In conclusion, this is the first study in which an orally administered edible vaccine showed efficacy in a polygastric model.
Transgenic Research | 2009
Edith Rojas-Anaya; Elizabeth Loza-Rubio; María Teresa de Jesús Olivera-Flores; Miguel A. Gómez-Lim
Antigens derived from various pathogens can readily be synthesized at high levels in plants in their authentic forms. Such antigens administered orally can induce an immune response and, in some cases, result in protection against a subsequent challenge. We here report the expression of rabies virus G protein into carrots. The G gene was subcloned into the pUCpSSrabG vector and then used to transform carrot embryogenic cells by particle bombardment. The carrot cells were selected in liquid medium, a method previously unreported. The presence of the transgene was verified by PCR, and by RT-PCR. By western blot, G protein transgene was identified in 93.3% of adult carrot roots. The G protein was quantified by densitometric analysis (range 0.4–1.2%). The expressed protein was antigenic in mice. This confirms that the carrot is an adequate system for antigen expression.
Molecular Ecology | 2015
Marina Escalera-Zamudio; Lisandra Zepeda-Mendoza; Elizabeth Loza-Rubio; Edith Rojas-Anaya; Maria L. Méndez-Ojeda; Carlos F. Arias; Alex D. Greenwood
We characterized the nucleic acid‐sensing Toll‐like receptors (TLR) of a New World bat species, the common vampire bat (Desmodus rotundus), and through a comparative molecular evolutionary approach searched for general adaptation patterns among the nucleic acid‐sensing TLRs of eight different bats species belonging to three families (Pteropodidae, Vespertilionidae and Phyllostomidae). We found that the bat TLRs are evolving slowly and mostly under purifying selection and that the divergence pattern of such receptors is overall congruent with the species tree, consistent with the evolution of many other mammalian nuclear genes. However, the chiropteran TLRs exhibited unique mutations fixed in ligand‐binding sites, some of which involved nonconservative amino acid changes and/or targets of positive selection. Such changes could potentially modify protein function and ligand‐binding properties, as some changes were predicted to alter nucleic acid binding motifs in TLR 9. Moreover, evidence for episodic diversifying selection acting specifically upon the bat lineage and sublineages was detected. Thus, the long‐term adaptation of chiropterans to a wide variety of environments and ecological niches with different pathogen profiles is likely to have shaped the evolution of the bat TLRs in an order‐specific manner. The observed evolutionary patterns provide evidence for potential functional differences between bat and other mammalian TLRs in terms of resistance to specific pathogens or recognition of nucleic acids in general.
Journal of Virology | 2015
Marina Escalera-Zamudio; M. Lisandra Zepeda Mendoza; Felix Heeger; Elizabeth Loza-Rubio; Edith Rojas-Anaya; Maria L. Méndez-Ojeda; Blanca Taboada; Camila J. Mazzoni; Carlos F. Arias; Alex D. Greenwood
ABSTRACT The Desmodus rotundus endogenous betaretrovirus (DrERV) is fixed in the vampire bat D. rotundus population and in other phyllostomid bats but is not present in all species from this family. DrERV is not phylogenetically related to Old World bat betaretroviruses but to betaretroviruses from rodents and New World primates, suggesting recent cross-species transmission. A recent integration age estimation of the provirus in some taxa indicates that an exogenous counterpart might have been in recent circulation.
Acta Veterinaria Hungarica | 2010
Elizabeth Loza-Rubio; Edith Rojas-Anaya
Plants have been identified as promising expression systems for the commercial production of vaccines because of the possibility of introducing exogenous genes into them, which permits the development of a new generation of biological products called edible vaccines. The advantages of oral vaccines of this new type are that they induce mucosal, humoral, cellular and protective immunity, they are cheaper, easier to store, distribute and administer, they do not require cold chain management, and some species can be stored for long periods of time without any spoilage and may be administered as purified proteins. Owing to these benefits, plant-produced vaccines represent a valuable option for animal health. The aim of this paper is to present a review of plant-produced vaccines against viruses affecting domestic animals. Some aspects of the feasibility of their use and the immune response elicited by such vaccines are also discussed, as the balance between tolerance and immunogenicity is a major concern for the use of plant-based vaccines.
Mbio | 2016
Marina Escalera-Zamudio; Edith Rojas-Anaya; Sergios-Orestis Kolokotronis; Blanca Taboada; Elizabeth Loza-Rubio; Maria L. Méndez-Ojeda; Carlos F. Arias; Nikolaus Osterrieder; Alex D. Greenwood
ABSTRACT Gammaherpesviruses (γHVs) are generally considered host specific and to have codiverged with their hosts over millions of years. This tenet is challenged here by broad-scale phylogenetic analysis of two viral genes using the largest sample of mammalian γHVs to date, integrating for the first time bat γHV sequences available from public repositories and newly generated viral sequences from two vampire bat species (Desmodus rotundus and Diphylla ecaudata). Bat and primate viruses frequently represented deep branches within the supported phylogenies and clustered among viruses from distantly related mammalian taxa. Following evolutionary scenario testing, we determined the number of host-switching and cospeciation events. Cross-species transmissions have occurred much more frequently than previously estimated, and most of the transmissions were attributable to bats and primates. We conclude that the evolution of the Gammaherpesvirinae subfamily has been driven by both cross-species transmissions and subsequent cospeciation within specific viral lineages and that the bat and primate orders may have potentially acted as superspreaders to other mammalian taxa throughout evolutionary history. IMPORTANCE It has long been believed that herpesviruses have coevolved with their hosts and are species specific. Nevertheless, a global evolutionary analysis of bat viruses in the context of other mammalian viruses, which could put this widely accepted view to the test, had not been undertaken until now. We present two main findings that may challenge the current view of γHV evolution: multiple host-switching events were observed at a higher rate than previously appreciated, and bats and primates harbor a large diversity of γHVs which may have led to increased cross-species transmissions from these taxa to other mammals. It has long been believed that herpesviruses have coevolved with their hosts and are species specific. Nevertheless, a global evolutionary analysis of bat viruses in the context of other mammalian viruses, which could put this widely accepted view to the test, had not been undertaken until now. We present two main findings that may challenge the current view of γHV evolution: multiple host-switching events were observed at a higher rate than previously appreciated, and bats and primates harbor a large diversity of γHVs which may have led to increased cross-species transmissions from these taxa to other mammals.
Expert Review of Vaccines | 2013
Celene Salgado-Miranda; Elizabeth Loza-Rubio; Edith Rojas-Anaya; Gary García-Espinosa
Since 1970, aquaculture production has grown. In 2010, it had an annual average rate of 6.3% with 59.9 million tons of product and soon could exceed capture fisheries as a source of fishery products. However, the occurrence of viral diseases continues to be a significant limiting factor and its control is important for the development of this sector. In aquaculture farms, fish are reared under intensive culture conditions, and the use of viral vaccines has enabled an increase in production. Several types of vaccines and strategies of vaccination have been developed; however, this approach has not reached the expected goals in the most susceptible stage (fingerlings). Currently, there are inactivated and recombinant commercial vaccines, mainly for salmonids and cyprinids. In addition, updated genomic and proteomic technology has expedited the research and expansion of new vaccine models, such as those comprised of subunits or DNA. The objective of this review is to cover the various types of viral vaccines that have been developed and are available for bony fishes, as well as the advantages and challenges that DNA vaccines present for massive administration in a growing aquaculture, possible risks for the environment, the controversy regarding genetically modified organisms and possible acceptance by consumers.
Nature Ecology and Evolution | 2018
M. Lisandra Zepeda Mendoza; Zijun Xiong; Marina Escalera-Zamudio; Anne Kathrine Runge; Julien Thézé; Daniel G. Streicker; Hannah K. Frank; Elizabeth Loza-Rubio; Shengmao Liu; Oliver A. Ryder; Jose Alfredo Samaniego Castruita; Aris Katzourakis; George Pacheco; Blanca Taboada; Ulrike Löber; Oliver G. Pybus; Yang Li; Edith Rojas-Anaya; Kristine Bohmann; Aldo Carmona Baez; Carlos F. Arias; Shiping Liu; Alex D. Greenwood; Mads F. Bertelsen; Nicole E. White; Michael Bunce; Guojie Zhang; Thomas Sicheritz-Pontén; M. P. Thomas Gilbert
Adaptation to specialized diets often requires modifications at both genomic and microbiome levels. We applied a hologenomic approach to the common vampire bat (Desmodus rotundus), one of the only three obligate blood-feeding (sanguivorous) mammals, to study the evolution of its complex dietary adaptation. Specifically, we assembled its high-quality reference genome (scaffold N50 = 26.9 Mb, contig N50 = 36.6 kb) and gut metagenome, and compared them against those of insectivorous, frugivorous and carnivorous bats. Our analyses showed a particular common vampire bat genomic landscape regarding integrated viral elements, a dietary and phylogenetic influence on gut microbiome taxonomic and functional profiles, and that both genetic elements harbour key traits related to the nutritional (for example, vitamin and lipid shortage) and non-nutritional (for example, nitrogen waste and osmotic homeostasis) challenges of sanguivory. These findings highlight the value of a holistic study of both the host and its microbiota when attempting to decipher adaptations underlying radical dietary lifestyles.The common vampire bat (Desmodus rotundus) is one of only three obligate blood-feeding mammals. By sequencing both its genome and gut metagenome, the authors provide a holistic view of the evolutionary adaptations that underlie this unusual diet.
Journal of Aquatic Animal Health | 2014
Celene Salgado-Miranda; Edith Rojas-Anaya; Gary García-Espinosa; Elizabeth Loza-Rubio
Infectious pancreatic necrosis virus (IPNV) is one of the most important viruses in the Pacific salmon Oncorhynchus spp., Atlantic Salmon Salmo salar, and Rainbow Trout O. mykiss industry. This virus has been shown to produce high mortality among salmonid fry and juveniles, and survivors might become carriers. Since 2000, IPNV has affected Mexican Rainbow Trout culture, resulting in considerable economic losses. In the current study, molecular characterization of the VP2 gene of a number of Mexican IPNV isolates was done and the viruss phylogenetic relationships to IPNV reference strains were investigated. The phylogenetic analysis indicated that Mexican IPNV isolates are closely related to strains from the United States and Canada and that all Mexican IPNV isolates belong to genogroup 1. Furthermore, low genetic diversity was found between the Mexican isolates (identity, 95.8-99.8% nucleotides and 95.8-99.6% amino acids). The result of the analysis of the amino acid residues found at positions 217, 221, and 247 (alanine, threonine, and glutamic acid, respectively) could be associated with virulence, although the expression of virulence factors is more complex and may be influenced by the agent and host factors. The high percentage of identity among the VP2 genes from geographically distant IPNV isolates and the evidence of wide distribution in the country might have been facilitated by carrier trout. This hypothesis is supported by the identification of the amino acid threonine at position 221 in all Mexican isolates, a factor related to the carrier state for IPNV, as reported by other studies.
Archive | 2018
Elizabeth Loza-Rubio; Edith Rojas-Anaya
Porcine reproductive and respiratory syndrome (PRRS) is an economically frustrating viral disease of pigs, characterized by severe reproductive failure in pregnant sows and respiratory disorders in piglets and growing pigs. Several research groups around the world have developed PRRSV vaccines. Some of these have been effective; however, owing to the complications that the syndrome presents and the viral evasion of the immune system, vaccines have not always been 100% effective. Biotechnological tools, such as the generation of plant-derived vaccines, offer alternatives to obtain more stable biologics, free of fermentation and cold chains. According to the literature, these vaccines are cost effective. In this document, we present some of the vaccines that have been developed against PRRSV, both traditional and new, and describe some alternatives developed in plants.
Collaboration
Dive into the Edith Rojas-Anaya's collaboration.
María Teresa de Jesús Olivera-Flores
National Autonomous University of Mexico
View shared research outputs