Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edmund F. Palermo is active.

Publication


Featured researches published by Edmund F. Palermo.


Biomacromolecules | 2009

Chemical Structure of Cationic Groups in Amphiphilic Polymethacrylates Modulates the Antimicrobial and Hemolytic Activities

Edmund F. Palermo; Kenichi Kuroda

A library of amphiphilic random copolymers containing cationic and hydrophobic side chains were prepared by copolymerization of amine-functionalized methacrylate monomers with various ratios of an alkyl methacrylate. Primary or tertiary amine groups, or quaternary ammonium groups, were utilized as the source of cationic charge in each copolymer series. The antimicrobial and hemolytic activities of these copolymers are reported, enabling a systematic assessment of the effect different amine groups exert on the biological activity of the polymers. It was shown that the copolymer composition of amphiphilic copolymers containing primary or tertiary amine groups can be tuned to achieve potent antimicrobial activity while minimizing red blood cell lysis. On the other hand, the copolymers containing quaternary ammonium groups required a greater amount of hydrophobic comonomer to express activity and showed generally lower selectivity for E. coli versus human red blood cells. Potentiometric titration data revealed the fraction of the primary or tertiary amine groups in the polymers, which are deprotonated (basic) at physiological pH. Measurements of the bactericidal and hemolytic activities in buffers of pH varying from 6 to 8 showed the impact of polymer ionization on biological activity. A decrease in the fraction of amine groups that are cationic, from alpha = 1.0 to 0.7, caused an enhancement of antimicrobial and hemolytic activity. As this value was decreased further to alpha = 0.5, loss of activity was observed. The activities of polymers containing quaternary ammonium groups were shown to be pH-independent.


Biomacromolecules | 2009

Structural Determinants of Antimicrobial Activity and Biocompatibility in Membrane-Disrupting Methacrylamide Random Copolymers

Edmund F. Palermo; Iva Sovadinova; Kenichi Kuroda

Low molecular weight random copolymers bearing protonated primary amine groups and hydrophobic alkyl groups in the side chains were synthesized and their activities against E. coli , S. aureus , human red blood cells, and human epithelial carcinoma cells (HEp-2) were quantified. The mole fraction of alkyl side chains in the copolymers (f(alkyl)) and the length of the alkyl chains were major determinants of the activities. Against E. coli cells, activity was diminished as f(alkyl) was increased from 0 to about 0.2, but was then enhanced dramatically as f(alkyl) was increased further. Activity against S. aureus was diminished continually with increasing f(alkyl). The cytotoxicity to human epithelial carcinoma cells also decreased with increasing f(alkyl). Conversely, hemolytic activity showed monotonic enhancement with increasing f(alkyl). The cationic homopolymer (f(alkyl) = 0) completely inhibited S. aureus growth at 3 microM (10.2 microg/mL) and completely inhibited metabolic activity in HEp-2 cells at 10 microM (34 microg/mL), although it did not induce any detectable hemolysis up to 645 microM (2000 microg/mL). Polymer-induced dye leakage from liposomes provided a biophysical basis for understanding the factors which modulate the polymer-membrane interactions. Disruption of Zwitterionic POPC vesicles induced by the copolymers was enhanced as f(alkyl) increased, following trends similar to the hemolytic activity data. The ability of the polymers to permeabilize vesicles of POPE/POPG and DOPG/Lysyl-DOPG/CL displayed trends similar to trends in their activities against E. coli and S. aureus , respectively. This was interpreted as evidence that the antimicrobial mechanism employed by the polymers involves disruption of bacterial cell membranes. An investigation of leakage kinetics revealed that the cationic homopolymer induced a gradual release of contents from POPE/POPG and DOPG/Lysyl-DOPG/CL vesicles, while the more hydrophobic copolymers induced rapid dye efflux. The results are interpreted as evidence that the cationic homopolymer and hydrophobic copolymers in this study exert their antimicrobial action by fundamentally different mechanisms of membrane disruption.


Applied Microbiology and Biotechnology | 2010

Structural determinants of antimicrobial activity in polymers which mimic host defense peptides

Edmund F. Palermo; Kenichi Kuroda

Antimicrobial polymers, designed to mimic the salient structural features of host defense peptides, are an emerging class of materials with potential for applications to combat infectious disease. Because the putative mode of action relies on physiochemical parameters of peptides such as hydrophobicity and cationic charge, rather than specific receptor-mediated interactions, the activity of the polymers can be modulated by tuning key structural parameters. While a wide diversity of chemical structures have been reported as antimicrobial polymers, a precise understanding of the structural factors which control their activity is a subject of current investigations. In this mini-review, we will outline the design principles that have been developed so far to fine tune the activity of these antimicrobial agents. The roles played by specific structural features such as cationic charge, hydrophobicity, and molecular weight will be discussed. Future directions of the field and potential challenges will be proposed.


Journal of Physical Chemistry B | 2011

Role of cationic group structure in membrane binding and disruption by amphiphilic copolymers.

Edmund F. Palermo; Dong Kuk Lee; Ayyalusamy Ramamoorthy; Kenichi Kuroda

Cationic, amphiphilic polymers are currently being used as antimicrobial agents that disrupt biomembranes, although their mechanisms remain poorly understood. Herein, membrane association and disruption by amphiphilic polymers bearing primary, tertiary, or quaternary ammonium salt groups reveal the role of cationic group structure in the polymer-membrane interaction. The dissociation constants of polymers to liposomes of POPC were obtained by a fluorometric assay, exploiting the environmental sensitivity of dansyl moieties in the polymer end groups. Dye leakage from liposomes and solid-state NMR provided further insights into the polymer-induced membrane disruption. Interestingly, the polymers with primary amine groups induced reorganization of the bilayer structure to align lipid headgroups perpendicular to the membrane. The results showed that polymers bearing primary amines exceed the tertiary and quaternary ammonium counterparts in membrane binding and disrupting abilities. This is likely due to enhanced complexation of primary amines to the phosphate groups in the lipids, through a combination of hydrogen bonding and electrostatic interactions.


Biomacromolecules | 2012

Cationic Spacer Arm Design Strategy for Control of Antimicrobial Activity and Conformation of Amphiphilic Methacrylate Random Copolymers

Edmund F. Palermo; Satyavani Vemparala; Kenichi Kuroda

Antimicrobial and hemolytic activities of amphiphilic random copolymers were modulated by the structure of the cationic side chain spacer arms, including 2-aminoethylene, 4-aminobutylene, and 6-aminohexylene groups. Cationic amphiphilic random copolymers with ethyl methacrylate (EMA) comonomer were prepared with a range of comonomer fractions, and the library of copolymers was screened for antimicrobial and hemolytic activities. Copolymers with 4-aminobutylene cationic side chains showed an order of magnitude enhancement in their antimicrobial activity relative to those with 2-aminoethylene spacer arms, without causing adverse hemolysis. When the spacer arms were further elongated to hexylene, the copolymers displayed potent antimicrobial and hemolytic activities. The 4-aminobutylene side chain appears to be the optimal spacer arm length for maximal antimicrobial potency and minimal hemolysis, when combined with hydrophobic ethylmethacrylate in a roughly 70/30 ratio. The copolymers displayed relatively rapid bactericidal kinetics and broad-spectrum activity against a panel of Gram-positive and Gram-negative bacteria. The effect of the spacer arms on the polymer conformation in the membrane-bound state was investigated by molecular dynamics simulations. The polymer backbones adopt an extended chain conformation, parallel to the membrane surface. A facially amphiphilic conformation at the membrane surface was observed, with the primary ammonium groups localized at the lipid phoshophate region and the nonpolar side chains of EMA comonomers buried in the hydrophobic membrane environment. This study demonstrates that the antimicrobial activity and molecular conformation of amphiphilic methacrylate random copolymers can be modulated by adjustment of cationic side chain spacer arms.


Biomacromolecules | 2011

Mechanism of Polymer-Induced Hemolysis: Nanosized Pore Formation and Osmotic Lysis

Iva Sovadinova; Edmund F. Palermo; Rui Huang; Laura M. Thoma; Kenichi Kuroda

Hemolysis induced by antimicrobial polymers was examined to gain an understanding of the mechanism of polymer toxicity to human cells. A series of cationic amphiphilic methacrylate random copolymers containing primary ammonium groups as the cationic functionality and either butyl or methyl groups as hydrophobic side chains have been prepared by radical copolymerization. Polymers with 0-47 mol % methyl groups in the side chains, relative to the total number of monomeric units, showed antimicrobial activity but no hemolysis. The polymers with 65 mol % methyl groups or 27 mol % butyl groups displayed both antimicrobial and hemolytic activity. These polymers induced leakage of the fluorescent dye calcein trapped in human red blood cells (RBCs), exhibiting the same dose-response curves as for hemoglobin leakage. The percentage of disappeared RBCs after hemolysis increased in direct proportion to the hemolysis percentage, indicating complete release of hemoglobin from fractions of RBCs (all-or-none leakage) rather than partial release from all cells (graded leakage). An osmoprotection assay using poly(ethylene glycol)s (PEGs) as osmolytes indicated that the PEGs with MW > 600 provided protection against hemolysis while low molecular weight PEGs and sucrose had no significant effect on the hemolytic activity of polymers. Accordingly, we propose the mechanism of polymer-induced hemolysis is that the polymers produce nanosized pores in the cell membranes of RBCs, causing an influx of small solutes into the cells and leading to colloid-osmotic lysis.


Macromolecular Bioscience | 2013

Molecular design, structures, and activity of antimicrobial peptide-mimetic polymers

Haruko Takahashi; Edmund F. Palermo; Kazuma Yasuhara; Gregory A. Caputo; Kenichi Kuroda

There is an urgent need for new antibiotics which are effective against drug-resistant bacteria without contributing to resistance development. We have designed and developed antimicrobial copolymers with cationic amphiphilic structures based on the mimicry of naturally occurring antimicrobial peptides. These copolymers exhibit potent antimicrobial activity against a broad spectrum of bacteria including methicillin-resistant Staphylococcus aureus with no adverse hemolytic activity. Notably, these polymers also did not result in any measurable resistance development in E. coli. The peptide-mimetic design principle offers significant flexibility and diversity in the creation of new antimicrobial materials and their potential biomedical applications.


Biomacromolecules | 2012

Design and synthesis of self-degradable antibacterial polymers by simultaneous chain- and step-growth radical copolymerization

Masato Mizutani; Edmund F. Palermo; Laura M. Thoma; Kotaro Satoh; Masami Kamigaito; Kenichi Kuroda

Self-degradable antimicrobial copolymers bearing cationic side chains and main-chain ester linkages were synthesized using the simultaneous chain- and step-growth radical polymerization of t-butyl acrylate and 3-butenyl 2-chloropropionate, followed by the transformation of t-butyl groups into primary ammonium salts. We prepared a series of copolymers with different structural features in terms of molecular weight, monomer composition, amine functionality, and side chain structures to examine the effect of polymer properties on their antimicrobial and hemolytic activities. The acrylate copolymers containing primary amine side chains displayed moderate antimicrobial activity against E. coli but were relatively hemolytic. The acrylate copolymer with quaternary ammonium groups and the acrylamide copolymers showed low or no antimicrobial and hemolytic activities. An acrylate copolymer with primary amine side chains degraded to lower molecular weight oligomers with lower antimicrobial activity in aqueous solution. This degradation was due to amidation of the ester groups of the polymer chains by the nucleophilic addition of primary amine groups in the side chains resulting in cleavage of the polymer main chain. The degradation mechanism was studied in detail by model reactions between amine compounds and precursor copolymers.


Journal of Materials Chemistry C | 2014

π-Conjugated gradient copolymers suppress phase separation and improve stability in bulk heterojunction solar cells

Edmund F. Palermo; Seth B. Darling; Anne J. McNeil

Gradient sequence copolymers of 3-hexylthiophene (90 mol%) and 3-(6-bromohexyl)thiophene (10 mol%) were synthesized by catalyst transfer polycondensation. Post-polymerization conversion of the side-chain bromides into azides and subsequent Cu-catalyzed azide–alkyne cycloaddition installed C60-functional groups. Comparing blends of poly(3-hexylthiophene) (P3HT) and phenyl-C61-butyric acid methyl ester (PCBM) with and without the gradient copolymer additive revealed that, when the gradient copolymer was present, micron-scale phase separation was not observed even after prolonged thermal annealing times. In addition, the PCBM was still able to quench the P3HT emission after thermal annealing, indicating that the donor–acceptor interfacial area is maintained. Together, these data suggest that the gradient copolymers are an effective compatibilizer for P3HT/PCBM physical blends. This stabilized film morphology led to stable power conversion efficiencies (PCE) of the corresponding bulk heterojunction solar cells even upon extended thermal annealing. Nevertheless, the short circuit current and fill factor were reduced when the gradient copolymer was present, leading to a lower PCE. Overall, these gradient copolymer additives represent a promising tool for inhibiting micron-scale phase separation and producing robust polymer/fullerene-based solar cells.


Analytical Chemistry | 2011

Investigations of the Interactions between Synthetic Antimicrobial Polymers and Substrate-Supported Lipid Bilayers Using Sum Frequency Generation Vibrational Spectroscopy

Christopher W. Avery; Edmund F. Palermo; Amanda McLaughlin; Kenichi Kuroda; Zhan Chen

Sum frequency generation (SFG) vibrational spectroscopy was used to analyze interactions between solid-supported lipid bilayers acting as models for cellular membranes and several membrane-active random copolymers with different lipophilic side chains, named 0R (no group), 33Me (methyl group), 11Bz (benzyl group), and 33Bu (butyl group), according to both the identity and percentage of the side chains within the polymer. Biological tests of the minimum inhibitory concentration (MIC) and hemolytic concentration were performed. The inherent surface sensitivity of SFG allowed for independent monitoring of isotopically labeled lipid bilayer leaflets as a function of concentration to study polymer-bilayer interaction mechanisms. Concentrations at which each bilayer leaflet was disrupted were quantitatively determined for each copolymer. Spectroscopic evidence of interaction with the bilayer below the critical concentrations was observed for the 11Bz polymer. The lipophilic butyl side chain of the 33Bu polymer was found to be oriented parallel to the surface normal. This research shows that SFG is a useful analytical technique which provides unique details regarding the interaction mechanisms of these membrane-active copolymers and lipid bilayers.

Collaboration


Dive into the Edmund F. Palermo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kazuma Yasuhara

Nara Institute of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge