Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Edna C. Hardeman is active.

Publication


Featured researches published by Edna C. Hardeman.


Cell | 2010

Dendritic Function of Tau Mediates Amyloid-β Toxicity in Alzheimer's Disease Mouse Models

Lars M. Ittner; Yazi D. Ke; Fabien Delerue; Mian Bi; Amadeus Gladbach; Janet van Eersel; Heidrun Wölfing; Billy Chieng; MacDonald J. Christie; Ian A. Napier; Anne Eckert; Matthias Staufenbiel; Edna C. Hardeman; Jürgen Götz

Alzheimers disease (AD) is characterized by amyloid-beta (Abeta) and tau deposition in brain. It has emerged that Abeta toxicity is tau dependent, although mechanistically this link remains unclear. Here, we show that tau, known as axonal protein, has a dendritic function in postsynaptic targeting of the Src kinase Fyn, a substrate of which is the NMDA receptor (NR). Missorting of tau in transgenic mice expressing truncated tau (Deltatau) and absence of tau in tau(-/-) mice both disrupt postsynaptic targeting of Fyn. This uncouples NR-mediated excitotoxicity and hence mitigates Abeta toxicity. Deltatau expression and tau deficiency prevent memory deficits and improve survival in Abeta-forming APP23 mice, a model of AD. These deficits are also fully rescued with a peptide that uncouples the Fyn-mediated interaction of NR and PSD-95 in vivo. Our findings suggest that this dendritic role of tau confers Abeta toxicity at the postsynapse with direct implications for pathogenesis and treatment of AD.


Physiological Reviews | 2008

Tropomyosin-Based Regulation of the Actin Cytoskeleton in Time and Space

Peter Gunning; Geraldine O’neill; Edna C. Hardeman

Tropomyosins are rodlike coiled coil dimers that form continuous polymers along the major groove of most actin filaments. In striated muscle, tropomyosin regulates the actin-myosin interaction and, hence, contraction of muscle. Tropomyosin also contributes to most, if not all, functions of the actin cytoskeleton, and its role is essential for the viability of a wide range of organisms. The ability of tropomyosin to contribute to the many functions of the actin cytoskeleton is related to the temporal and spatial regulation of expression of tropomyosin isoforms. Qualitative and quantitative changes in tropomyosin isoform expression accompany morphogenesis in a range of cell types. The isoforms are segregated to different intracellular pools of actin filaments and confer different properties to these filaments. Mutations in tropomyosins are directly involved in cardiac and skeletal muscle diseases. Alterations in tropomyosin expression directly contribute to the growth and spread of cancer. The functional specificity of tropomyosins is related to the collaborative interactions of the isoforms with different actin binding proteins such as cofilin, gelsolin, Arp 2/3, myosin, caldesmon, and tropomodulin. It is proposed that local changes in signaling activity may be sufficient to drive the assembly of isoform-specific complexes at different intracellular sites.


Human Molecular Genetics | 2008

An Actn3 knockout mouse provides mechanistic insights into the association between α-actinin-3 deficiency and human athletic performance

Daniel G. MacArthur; Jane T. Seto; Stephen Chan; Kate G. R. Quinlan; Joanna M. Raftery; Nigel Turner; Megan D. Nicholson; Edna C. Hardeman; Peter Gunning; Gregory J. Cooney; Stewart I. Head; Nan Yang; Kathryn N. North

A common nonsense polymorphism (R577X) in the ACTN3 gene results in complete deficiency of the fast skeletal muscle fiber protein alpha-actinin-3 in an estimated one billion humans worldwide. The XX null genotype is under-represented in elite sprint athletes, associated with reduced muscle strength and sprint performance in non-athletes, and is over-represented in endurance athletes, suggesting that alpha-actinin-3 deficiency increases muscle endurance at the cost of power generation. Here we report that muscle from Actn3 knockout mice displays reduced force generation, consistent with results from human association studies. Detailed analysis of knockout mouse muscle reveals reduced fast fiber diameter, increased activity of multiple enzymes in the aerobic metabolic pathway, altered contractile properties, and enhanced recovery from fatigue, suggesting a shift in the properties of fast fibers towards those characteristic of slow fibers. These findings provide the first mechanistic explanation for the reported associations between R577X and human athletic performance and muscle function.


Nature Genetics | 2007

Loss of ACTN3 gene function alters mouse muscle metabolism and shows evidence of positive selection in humans

Daniel G. MacArthur; Jane T. Seto; Joanna M. Raftery; Kate G. R. Quinlan; Gavin A. Huttley; Jeff Hook; Frances A. Lemckert; Michael R. Edwards; Yemima Berman; Edna C. Hardeman; Peter Gunning; Simon Easteal; Nan Yang; Kathryn N. North

More than a billion humans worldwide are predicted to be completely deficient in the fast skeletal muscle fiber protein α-actinin-3 owing to homozygosity for a premature stop codon polymorphism, R577X, in the ACTN3 gene. The R577X polymorphism is associated with elite athlete status and human muscle performance, suggesting that α-actinin-3 deficiency influences the function of fast muscle fibers. Here we show that loss of α-actinin-3 expression in a knockout mouse model results in a shift in muscle metabolism toward the more efficient aerobic pathway and an increase in intrinsic endurance performance. In addition, we demonstrate that the genomic region surrounding the 577X null allele shows low levels of genetic variation and recombination in individuals of European and East Asian descent, consistent with strong, recent positive selection. We propose that the 577X allele has been positively selected in some human populations owing to its effect on skeletal muscle metabolism.


American Journal of Human Genetics | 2001

Nemaline Myopathy Caused by Mutations in the Muscle α-Skeletal-Actin Gene

Biljana Ilkovski; Sandra T. Cooper; Kristen J. Nowak; Monique M. Ryan; Nan Yang; Christina Schnell; Hayley J. Durling; Laurence Roddick; Ian Wilkinson; Andrew J. Kornberg; Kevin Collins; Geoff Wallace; Peter Gunning; Edna C. Hardeman; Nigel G. Laing; Kathryn N. North

Nemaline myopathy (NM) is a clinically and genetically heterogeneous disorder characterized by muscle weakness and the presence of nemaline bodies (rods) in skeletal muscle. Disease-causing mutations have been reported in five genes, each encoding a protein component of the sarcomeric thin filament. Recently, we identified mutations in the muscle α-skeletal-actin gene (ACTA1) in a subset of patients with NM. In the present study, we evaluated a new series of 35 patients with NM. We identified five novel missense mutations in ACTA1, which suggested that mutations in muscle α-skeletal actin account for the disease in ∼15% of patients with NM. The mutations appeared de novo and represent new dominant mutations. One proband subsequently had two affected children, a result consistent with autosomal dominant transmission. The seven patients exhibited marked clinical variability, ranging from severe congenital-onset weakness, with death from respiratory failure during the 1st year of life, to a mild childhood-onset myopathy, with survival into adulthood. There was marked variation in both age at onset and clinical severity in the three affected members of one family. Common pathological features included abnormal fiber type differentiation, glycogen accumulation, myofibrillar disruption, and “whorling” of actin thin filaments. The percentage of fibers with rods did not correlate with clinical severity; however, the severe, lethal phenotype was associated with both severe, generalized disorganization of sarcomeric structure and abnormal localization of sarcomeric actin. The marked variability, in clinical phenotype, among patients with different mutations in ACTA1 suggests that both the site of the mutation and the nature of the amino acid change have differential effects on thin-filament formation and protein-protein interactions. The intrafamilial variability suggests that α-actin genotype is not the sole determinant of phenotype.


The FASEB Journal | 1991

Multiple mechanisms regulate muscle fiber diversity.

Peter Gunning; Edna C. Hardeman

Adult skeletal muscles are composed of clusters of multinucleated muscle cells called myofibers. At least three different types of myofibers can be detected within mammals based on their physiological properties and their expression of different contractile protein isoforms. Different skeletal muscles display a wide range of combinations of myofibers. Recent work has demonstrated that multiple mechanisms are responsible for the generation of these myofiber types during development. Muscle progenitor cells have been dissected into two categories on the basis of which isoforms of myosin heavy chain (MHC) they express when they differentiate. Neural and other environmental influences act to modify decisions concerning the type of contractile protein a myofiber may express, and this is most apparent for MHC. The other contractile protein gene families are initially regulated independent of the MHC gene family. One or more events late in development are responsible for coordinating isoform expression between the gene families to generate the adult phenotype. Studies of muscle gene expression have revealed that regulation can occur at the levels of transcription, alternative splicing of primary transcripts, mRNA stability, and translation. The current challenge is to decipher how environmental and functional information is intrepreted in terms of the activity of the regulators of muscle gene expression.—Gunning, P.; Hardeman, E. Multiple mechanisms regulate muscle fiber diversity. FASEB J. 5: 3064‐3070; 1991.


Journal of Biological Chemistry | 2006

Four and a Half LIM Protein 1 Binds Myosin-binding Protein C and Regulates Myosin Filament Formation and Sarcomere Assembly

Meagan Jane Mcgrath; Denny L. Cottle; Mai-Anh Nguyen; Jennifer M. Dyson; Imogen Denise Coghill; Paul A. Robinson; Melissa Holdsworth; Belinda S. Cowling; Edna C. Hardeman; Christina A. Mitchell; Susan J. Brown

Four and a half LIM protein 1 (FHL1/SLIM1) is highly expressed in skeletal and cardiac muscle; however, the function of FHL1 remains unknown. Yeast two-hybrid screening identified slow type skeletal myosin-binding protein C as an FHL1 binding partner. Myosin-binding protein C is the major myosin-associated protein in striated muscle that enhances the lateral association and stabilization of myosin thick filaments and regulates actomyosin interactions. The interaction between FHL1 and myosin-binding protein C was confirmed using co-immunoprecipitation of recombinant and endogenous proteins. Recombinant FHL2 and FHL3 also bound myosin-binding protein C. FHL1 impaired co-sedimentation of myosin-binding protein C with reconstituted myosin filaments, suggesting FHL1 may compete with myosin for binding to myosin-binding protein C. In intact skeletal muscle and isolated myofibrils, FHL1 localized to the I-band, M-line, and sarcolemma, co-localizing with myosin-binding protein C at the sarcolemma in intact skeletal muscle. Furthermore, in isolated myofibrils FHL1 staining at the M-line appeared to extend partially into the C-zone of the A-band, where it co-localized with myosin-binding protein C. Overexpression of FHL1 in differentiating C2C12 cells induced “sac-like” myotube formation (myosac), associated with impaired Z-line and myosin thick filament assembly. This phenotype was rescued by co-expression of myosin-binding protein C. FHL1 knockdown using RNAi resulted in impaired myosin thick filament formation associated with reduced incorporation of myosin-binding protein C into the sarcomere. This study identified FHL1 as a novel regulator of myosin-binding protein C activity and indicates a role for FHL1 in sarcomere assembly.


Journal of Cell Science | 2015

Tropomyosin - master regulator of actin filament function in the cytoskeleton

Peter Gunning; Edna C. Hardeman; Pekka Lappalainen; Daniel P. Mulvihill

ABSTRACT Tropomyosin (Tpm) isoforms are the master regulators of the functions of individual actin filaments in fungi and metazoans. Tpms are coiled-coil parallel dimers that form a head-to-tail polymer along the length of actin filaments. Yeast only has two Tpm isoforms, whereas mammals have over 40. Each cytoskeletal actin filament contains a homopolymer of Tpm homodimers, resulting in a filament of uniform Tpm composition along its length. Evidence for this ‘master regulator’ role is based on four core sets of observation. First, spatially and functionally distinct actin filaments contain different Tpm isoforms, and recent data suggest that members of the formin family of actin filament nucleators can specify which Tpm isoform is added to the growing actin filament. Second, Tpms regulate whole-organism physiology in terms of morphogenesis, cell proliferation, vesicle trafficking, biomechanics, glucose metabolism and organ size in an isoform-specific manner. Third, Tpms achieve these functional outputs by regulating the interaction of actin filaments with myosin motors and actin-binding proteins in an isoform-specific manner. Last, the assembly of complex structures, such as stress fibers and podosomes involves the collaboration of multiple types of actin filament specified by their Tpm composition. This allows the cell to specify actin filament function in time and space by simply specifying their Tpm isoform composition. Summary: This Commentary explains how tropomyosin isoforms determine the function of individual actin filaments in the cytoskeleton, and their subsequent use in directing cell structure and function.


Journal of Cell Biology | 2008

Identification of FHL1 as a regulator of skeletal muscle mass: implications for human myopathy.

Belinda S. Cowling; Meagan Jane Mcgrath; Mai-Anh Nguyen; Denny L. Cottle; Susan Brown; Joachim Schessl; Yaqun Zou; Josephine E. Joya; Carsten G. Bönnemann; Edna C. Hardeman; Christina A. Mitchell

Regulators of skeletal muscle mass are of interest, given the morbidity and mortality of muscle atrophy and myopathy. Four-and-a-half LIM protein 1 (FHL1) is mutated in several human myopathies, including reducing-body myopathy (RBM). The normal function of FHL1 in muscle and how it causes myopathy remains unknown. We find that FHL1 transgenic expression in mouse skeletal muscle promotes hypertrophy and an oxidative fiber-type switch, leading to increased whole-body strength and fatigue resistance. Additionally, FHL1 overexpression enhances myoblast fusion, resulting in hypertrophic myotubes in C2C12 cells, (a phenotype rescued by calcineurin inhibition). In FHL1-RBM C2C12 cells, there are no hypertrophic myotubes. FHL1 binds with the calcineurin-regulated transcription factor NFATc1 (nuclear factor of activated T cells, cytoplasmic, calcineurin-dependent 1), enhancing NFATc1 transcriptional activity. Mutant RBM-FHL1 forms aggregate bodies in C2C12 cells, sequestering NFATc1 and resulting in reduced NFAT nuclear translocation and transcriptional activity. NFATc1 also colocalizes with mutant FHL1 to reducing bodies in RBM-afflicted skeletal muscle. Therefore, via NFATc1 signaling regulation, FHL1 appears to modulate muscle mass and strength enhancement.


Molecular and Cellular Biology | 1987

Differential patterns of transcript accumulation during human myogenesis

Peter Gunning; Edna C. Hardeman; Robert Wade; P Ponte; W Bains; Helen M. Blau; Larry Kedes

We evaluated the extent to which muscle-specific genes display identical patterns of mRNA accumulation during human myogenesis. Cloned satellite cells isolated from adult human skeletal muscle were expanded in culture, and RNA was isolated from low- and high-confluence cells and from fusing cultures over a 15-day time course. The accumulation of over 20 different transcripts was compared in these samples with that in fetal and adult human skeletal muscle. The expression of carbonic anhydrase 3, myoglobin, HSP83, and mRNAs encoding eight unknown proteins were examined in human myogenic cultures. In general, the expression of most of the mRNAs was induced after fusion to form myotubes. However, several exceptions, including carbonic anhydrase and myoglobin, showed no detectable expression in early myotubes. Comparison of all transcripts demonstrated little, if any, identity of mRNA accumulation patterns. Similar variability was also seen for mRNAs which were also expressed in nonmuscle cells. Accumulation of mRNAs encoding alpha-skeletal, alpha-cardiac, beta- and gamma-actin, total myosin heavy chain, and alpha- and beta-tubulin also displayed discordant regulation, which has important implications for sarcomere assembly. Cardiac actin was the only muscle-specific transcript that was detected in low-confluency cells and was the major alpha-actin mRNA at all times in fusing cultures. Skeletal actin was transiently induced in fusing cultures and then reduced by an order of magnitude. Total myosin heavy-chain mRNA accumulation lagged behind that of alpha-actin. Whereas beta- and gamma-actin displayed a sharp decrease after initiation of fusion and thereafter did not change, alpha- and beta-tubulin were transiently induced to a high level during the time course in culture. We conclude that each gene may have its own unique determinants of transcript accumulation and that the phenotype of a muscle may not be determined so much by which genes are active or silent but rather by the extent to which their transcript levels are modulated. Finally, we observed that patterns of transcript accumulation established within the myotube cultures were consistent with the hypothesis that myoblasts isolated from adult tissue recapitulate a myogenic developmental program. However, we also detected a transient appearance of adult skeletal muscle-specific transcripts in high-confluence myoblast cultures. This indicates that the initial differentiation of these myoblasts may reflect a more complex process than simple recapitulation of development.

Collaboration


Dive into the Edna C. Hardeman's collaboration.

Top Co-Authors

Avatar

Peter Gunning

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Stephen J. Palmer

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Josephine E. Joya

Children's Medical Research Institute

View shared research outputs
Top Co-Authors

Avatar

Galina Schevzov

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Jeff Hook

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Justine R. Stehn

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert Wade

University of Maryland

View shared research outputs
Researchain Logo
Decentralizing Knowledge