Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Eduardo N. Maldonado is active.

Publication


Featured researches published by Eduardo N. Maldonado.


Cancer Research | 2010

Free Tubulin Modulates Mitochondrial Membrane Potential in Cancer Cells

Eduardo N. Maldonado; Jyoti Patnaik; Matthew R. Mullins; John J. Lemasters

Formation of the mitochondrial membrane potential (ΔΨ) depends on flux of respiratory substrates, ATP, ADP, and Pi through voltage-dependent anion channels (VDAC). As tubulin promotes single-channel closure of VDAC, we hypothesized that tubulin is a dynamic regulator of ΔΨ, which in cultured cancer cells was assessed by confocal microscopy of the potential-indicating fluorophore tetramethylrhodamine methylester (TMRM). Microtubule destabilizers, rotenone, colchicine, and nocodazole, and the microtubule stabilizer paclitaxel increased and decreased cellular free tubulin, respectively, and in parallel decreased and increased ΔΨ. Protein kinase A (PKA) activation by cAMP analogues and glycogen synthase kinase 3β (GSK-3β) inhibition decreased ΔΨ, whereas PKA inhibition hyperpolarized, consistent with reports that PKA and GSK-3β decrease and increase VDAC conductance, respectively. Plasma membrane potential assessed by DiBAC(4)(3) was not altered by any of the treatments. We propose that inhibition of VDAC by free tubulin limits mitochondrial metabolism in cancer cells.


Journal of Biological Chemistry | 2013

Voltage-dependent Anion Channels Modulate Mitochondrial Metabolism in Cancer Cells REGULATION BY FREE TUBULIN AND ERASTIN

Eduardo N. Maldonado; Kely L. Sheldon; David N. DeHart; Jyoti Patnaik; Yefim Manevich; Danyelle M. Townsend; Sergey M. Bezrukov; Tatiana K. Rostovtseva; John J. Lemasters

Background: Metabolites generating mitochondrial membrane potential (ΔΨ) enter through voltage-dependent anion channels (VDAC). Results: VDAC3 contributed to ΔΨ formation more than VDAC1/2. VDAC3 knockdown decreased ATP and NADH/NAD+. Tubulin decreased VDAC1/2 not VDAC3 conductance, an effect antagonized by erastin. Conclusion: Tubulin negatively modulates mitochondrial metabolism by closing VDAC1/2. Significance: Antagonism of tubulin-dependent VDAC closure reverses mitochondrial suppression in Warburg metabolism. Respiratory substrates and adenine nucleotides cross the mitochondrial outer membrane through the voltage-dependent anion channel (VDAC), comprising three isoforms — VDAC1, 2, and 3. We characterized the role of individual isoforms in mitochondrial metabolism by HepG2 human hepatoma cells using siRNA. With VDAC3 to the greatest extent, all VDAC isoforms contributed to the maintenance of mitochondrial membrane potential, but only VDAC3 knockdown decreased ATP, ADP, NAD(P)H, and mitochondrial redox state. Cells expressing predominantly VDAC3 were least sensitive to depolarization induced by increased free tubulin. In planar lipid bilayers, free tubulin inhibited VDAC1 and VDAC2 but not VDAC3. Erastin, a compound that interacts with VDAC, blocked and reversed mitochondrial depolarization after microtubule destabilizers in intact cells and antagonized tubulin-induced VDAC blockage in planar bilayers. In conclusion, free tubulin inhibits VDAC1/2 and limits mitochondrial metabolism in HepG2 cells, contributing to the Warburg phenomenon. Reversal of tubulin-VDAC interaction by erastin antagonizes Warburg metabolism and restores oxidative mitochondrial metabolism.


Autophagy | 2009

Roles of mitophagy and the mitochondrial permeability transition in remodeling of cultured rat hepatocytes

Sara Rodríguez-Enríquez; Yoichiro Kai; Eduardo N. Maldonado; Robert T. Currin; John J. Lemasters

In primary culture, hepatocytes dedifferentiate, and their cytoplasm undergoes remodeling. Here, our aim was to characterize changes of mitochondria during remodeling. Hepatocytes were cultured 1 to 5 days in complete serum-containing Waymouth’s medium. In rat hepatocytes loaded with MitoTracker Green (MTG), tetramethylrhodamine methylester (TMRM), and/or LysoTracker Red (LTR), confocal microscopy revealed that mitochondria number and mass decreased by approximately 50% between Day 1 and Day 3 of culture. As mitochondria disappeared, lysosomes/autophagosomes proliferated 5-fold. Decreased mitochondrial content correlated with (a) decreased cytochrome c oxidase activity and mitochondrial number observed by electron microscopy and (b) a profound decrease of PGC-1α mRNA expression. By contrast, mtDNA content per cell remained constant from the first to the third day of culture, although ethidium bromide (de novo mtDNA synthesis inhibitor) caused mtDNA to decrease by half from the first to the third culture day. As mitochondria disappeared, their MTG label moved into LTR-labeled lysosomes, which was indicative of autophagic degradation. A multiwell fluorescence assay revealed a 2.5-fold increase of autophagy on Day 3 of culture, which was decreased by 3- methyladenine, an inhibitor of autophagy, and also by cyclosporin A and NIM811, both selective inhibitors of the mitochondrial permeability transition (MPT). These findings indicate that mitochondrial autophagy (mitophagy) and the MPT underlie mitochondrial remodeling in cultured hepatocytes.


PLOS ONE | 2011

Phosphorylation of voltage-dependent anion channel by serine/threonine kinases governs its interaction with tubulin.

Kely L. Sheldon; Eduardo N. Maldonado; John J. Lemasters; Tatiana K. Rostovtseva; Sergey M. Bezrukov

Tubulin was recently found to be a uniquely potent regulator of the voltage-dependent anion channel (VDAC), the most abundant channel of the mitochondrial outer membrane, which constitutes a major pathway for ATP/ADP and other metabolites across this membrane. Dimeric tubulin induces reversible blockage of VDAC reconstituted into a planar lipid membrane and dramatically reduces respiration of isolated mitochondria. Here we show that VDAC phosphorylation is an important determinant of its interaction with dimeric tubulin. We demonstrate that in vitro phosphorylation of VDAC by either glycogen synthase kinase-3β (GSK3β) or cAMP-dependent protein kinase A (PKA), increases the on-rate of tubulin binding to the reconstituted channel by orders of magnitude, but only for tubulin at the cis side of the membrane. This and the fact the basic properties of VDAC, such as single-channel conductance and selectivity, remained unaltered by phosphorylation allowed us to suggest the phosphorylation regions positioned on the cytosolic loops of VDAC and establish channel orientation in our reconstitution experiments. Experiments on human hepatoma cells HepG2 support our conjecture that VDAC permeability for the mitochondrial respiratory substrates is regulated by dimeric tubulin and channel phosphorylation. Treatment of HepG2 cells with colchicine prevents microtubule polymerization, thus increasing dimeric tubulin availability in the cytosol. Accordingly, this leads to a decrease of mitochondrial potential measured by assessing mitochondrial tetramethylrhodamine methyester uptake with confocal microscopy. Inhibition of PKA activity blocks and reverses mitochondrial depolarization induced by colchicine. Our findings suggest a novel functional link between serine/threonine kinase signaling pathways, mitochondrial respiration, and the highly dynamic microtubule network which is characteristic of cancerogenesis and cell proliferation.


Journal of Biological Chemistry | 2007

Very Long-chain Polyunsaturated Fatty Acids Are the Major Acyl Groups of Sphingomyelins and Ceramides in the Head of Mammalian Spermatozoa

Natalia Edith Furland; Gerardo M. Oresti; Silvia S. Antollini; Andrés Venturino; Eduardo N. Maldonado; Marta I. Aveldaño

Very long-chain (C24 to C34) polyunsaturated fatty acids (VLCPUFA) are important constituents of sphingomyelin (SM) and ceramide (Cer) in testicular germ cells. In the present paper we focused on the SM and Cer and their fatty acids in spermatozoa and their main regions, heads and tails. In bull and ram spermatozoa, SM was the third most abundant phospholipid and VLCPUFA were the major acyl groups (∼70%) of SM and Cer. In rat epididymal spermatozoa the SM/Cer ratio was low in the absence of and could be maintained high in the presence of the cation chelator EDTA, added to the medium used for sperm isolation. This fact points to the occurrence of an active divalent cation-dependent sphingomyelinase. Bull and rat sperm had an uneven head-tail distribution of phospholipid, with virtually all the VLCPUFA-rich SM located at the head, the lower SM content in the rat being determined by the lower sperm head/tail size ratio. Most of the SM from bull sperm heads was readily solubilized with 1% Triton X-100 at 4 °C. The detergent-soluble SM fraction was richer in VLCPUFA than the nonsoluble fraction and richer in saturated fatty acids. Cer was produced at the expense of SM, thus decreasing severalfold the SM/Cer ratio in rat spermatozoa incubated for 2 h in presence of the sperm-capacitating agents, calcium, bicarbonate, and albumin. The generation of Cer from SM in the sperm head surface may be an early step among the biochemical and biophysical changes known to take place in the spermatozoon in the physiological events preceding fertilization.


Journal of Pharmacology and Experimental Therapeutics | 2012

Warburg Revisited: Regulation of Mitochondrial Metabolism by Voltage-Dependent Anion Channels in Cancer Cells

Eduardo N. Maldonado; John J. Lemasters

The bioenergetics of cancer cells is characterized by a high rate of aerobic glycolysis and suppression of mitochondrial metabolism (Warburg phenomenon). Mitochondrial metabolism requires inward and outward flux of hydrophilic metabolites, including ATP, ADP and respiratory substrates, through voltage-dependent anion channels (VDACs) in the mitochondrial outer membrane. Although VDACs were once considered to be constitutively open, closure of the VDAC is emerging as an adjustable limiter (governator) of mitochondrial metabolism. Studies of VDACs reconstituted into planar lipid bilayers show that tubulin at nanomolar concentrations decreases VDAC conductance. In tumor cell lines, microtubule-destabilizing agents increase cytoplasmic free tubulin and decrease mitochondrial membrane potential (ΔΨm), whereas microtubule stabilization increases ΔΨm. Tubulin-dependent suppression of ΔΨm is further potentiated by protein kinase A activation and glycogen synthase kinase-3β inhibition. Knockdown of different VDAC isoforms, especially of the least abundant isoform, VDAC3, also decreases ΔΨm, cellular ATP, and NADH/NAD+, suggesting that VDAC1 and VDAC2 are most inhibited by free tubulin. The brake on mitochondrial metabolism imposed by the VDAC governator probably is released when spindles form and free tubulin decreases as cells enter mitosis, which better provides for the high ATP demands of chromosome separation and cytokinesis. In conclusion, tubulin-dependent closure of VDACs represents a new mechanism contributing to the suppression of mitochondrial metabolism in the Warburg phenomenon.


Journal of Biological Chemistry | 2007

Ceramides and sphingomyelins with high proportions of very long-chain polyunsaturated fatty acids in mammalian germ cells.

Natalia Edith Furland; Samanta Romina Zanetti; Gerardo M. Oresti; Eduardo N. Maldonado; Marta I. Aveldaño

Very long-chain polyunsaturated fatty acids (VLCPUFA) have previously been shown to be components of sphingomyelin (SM) of mammalian testis and spermatozoa. Here we examined the fatty acids of testicular ceramide (Cer) in comparison with those of SM in some mammals with a special focus on the rat testis. In bull, cat, dog, rabbit, mouse, and rat, VLCPUFA were found in both testicular lipids, Cer having a higher percentage of VLCPUFA than SM. Rat testis had the highest percentage of VLCPUFA in both lipids, the major ones being 28:4n-6 and 30:5n-6. VLCPUFA-containing SM and Cer occurred in cells located in the seminiferous tubules, where germ cells had a higher percentage of these species than Sertoli cells. Seminiferous tubule fractionation showed that SM and Cer of mitochondria and lysosomes had mostly saturates and negligible VLCPUFA, the latter being important in the SM and Cer of microsomes and other membrane fractions. VLCPUFA were absent from the SM and Cer of rat prepuberal testis, increased with the onset of spermatogenesis to account for nearly 15 and 40% of the total fatty acids of testicular SM and Cer, respectively, remained at those levels throughout the adult life of fertile rats and tended to decrease at advanced ages. Four conditions that lead to selective death of germ cells in vivo, namely experimental cryptorchidism, post-ischemic reperfusion, focalized x-ray irradiation and treatments with the antineoplasic drug doxorubicin, caused the VLCPUFA to disappear from the testicular SM and Cer of adult fertile rats, showing that these lipids are specific traits of spermatogenic cells.


Mitochondrion | 2014

ATP/ADP ratio, the missed connection between mitochondria and the Warburg effect

Eduardo N. Maldonado; John J. Lemasters

Non-proliferating cells generate the bulk of cellular ATP by fully oxidizing respiratory substrates in mitochondria. Respiratory substrates cross the mitochondrial outer membrane through only one channel, the voltage dependent anion channel (VDAC). Once in the matrix, respiratory substrates are oxidized in the tricarboxylic acid cycle to generate mostly NADH that is further oxidized in the respiratory chain to generate a proton motive force comprised mainly of membrane potential (ΔΨ) to synthesize ATP. Mitochondrial ΔΨ then drives the release of ATP(4-) from the matrix in exchange for ADP(3-) in the cytosol via the adenine nucleotide translocator (ANT) located in the mitochondrial inner membrane. Thus, mitochondrial function in non-proliferating cells drives a high cytosolic ATP/ADP ratio, essential to inhibit glycolysis. By contrast, the bioenergetics of the Warburg phenotype of proliferating cells is characterized by enhanced aerobic glycolysis and the suppression of mitochondrial metabolism. Suppressed mitochondrial function leads to lower production of mitochondrial ATP and hence lower cytosolic ATP/ADP ratios that favor enhanced glycolysis. Thus, the cytosolic ATP/ADP ratio is a key feature that determines if cell metabolism is predominantly oxidative or glycolytic. Here, we describe two novel mechanisms to explain the suppression of mitochondrial metabolism in cancer cells: the relative closure of VDAC by free tubulin and the inactivation of ANT. Both mechanisms contribute to low ATP/ADP ratios that activate glycolysis.


Journal of Lipid Research | 2006

FA2H-dependent fatty acid 2-hydroxylation in postnatal mouse brain.

Nathan L. Alderson; Eduardo N. Maldonado; Michael J. Kern; Narayan R. Bhat; Hiroko Hama

2-Hydroxy fatty acids are relatively minor species of membrane lipids found almost exclusively as N-acyl chains of sphingolipids. In mammals, 2-hydroxy sphingolipids are uniquely abundant in myelin galactosylceramide and sulfatide. Despite the well-documented abundance of 2-hydroxy galactolipids in the nervous system, the enzymatic process of the 2-hydroxylation is not fully understood. To fill this gap, we have identified a human fatty acid 2-hydroxylase gene (FA2H) that is highly expressed in brain. In this report, we test the hypothesis that FA2H is the major fatty acid 2-hydroxylase in mouse brain and that free 2-hydroxy fatty acids are formed as precursors of myelin 2-hydroxy galactolipids. The fatty acid compositions of galactolipids in neonatal mouse brain gradually changed during the course of myelination. The relative ratio of 2-hydroxy versus nonhydroxy galactolipids was very low at 2 days of age (∼8% of total galactolipids) and increased 6- to 8-fold by 30 days of age. During this period, free 2-hydroxy fatty acid levels in mouse brain increased 5- to 9-fold, and their composition was reflected in the fatty acids in galactolipids, consistent with a precursor-product relationship. The changes in free 2-hydroxy fatty acid levels coincided with fatty acid 2-hydroxylase activity and with the upregulation of FA2H expression. Furthermore, mouse brain fatty acid 2-hydroxylase activity was inhibited by anti-FA2H antibodies. Together, these data provide evidence that FA2H is the major fatty acid 2-hydroxylase in brain and that 2-hydroxylation of free fatty acids is the first step in the synthesis of 2-hydroxy galactolipids.


Biochimica et Biophysica Acta | 2012

Regulation of Mitochondrial Function by Voltage Dependent Anion Channels in Ethanol Metabolism and the Warburg Effect

John J. Lemasters; Ekhson Holmuhamedov; Christoph Czerny; Zhi Zhong; Eduardo N. Maldonado

Voltage dependent anion channels (VDAC) are highly conserved proteins that are responsible for permeability of the mitochondrial outer membrane to hydrophilic metabolites like ATP, ADP and respiratory substrates. Although previously assumed to remain open, VDAC closure is emerging as an important mechanism for regulation of global mitochondrial metabolism in apoptotic cells and also in cells that are not dying. During hepatic ethanol oxidation to acetaldehyde, VDAC closure suppresses exchange of mitochondrial metabolites, resulting in inhibition of ureagenesis. In vivo, VDAC closure after ethanol occurs coordinately with mitochondrial uncoupling. Since acetaldehyde passes through membranes independently of channels and transporters, VDAC closure and uncoupling together foster selective and more rapid oxidative metabolism of toxic acetaldehyde to nontoxic acetate by mitochondrial aldehyde dehydrogenase. In single reconstituted VDAC, tubulin decreases VDAC conductance, and in HepG2 hepatoma cells, free tubulin negatively modulates mitochondrial membrane potential, an effect enhanced by protein kinase A. Tubulin-dependent closure of VDAC in cancer cells contributes to suppression of mitochondrial metabolism and may underlie the Warburg phenomenon of aerobic glycolysis. This article is part of a Special Issue entitled: VDAC structure, function, and regulation of mitochondrial metabolism.

Collaboration


Dive into the Eduardo N. Maldonado's collaboration.

Top Co-Authors

Avatar

John J. Lemasters

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

David N. DeHart

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Monika Gooz

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Jyoti Patnaik

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Diana Fang

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Sergey M. Bezrukov

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Kareem Heslop

Medical University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Zhi Zhong

Medical University of South Carolina

View shared research outputs
Researchain Logo
Decentralizing Knowledge