Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sergey M. Bezrukov is active.

Publication


Featured researches published by Sergey M. Bezrukov.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Tubulin binding blocks mitochondrial voltage-dependent anion channel and regulates respiration

Tatiana K. Rostovtseva; Kely L. Sheldon; Elnaz Hassanzadeh; Claire Monge; Valdur Saks; Sergey M. Bezrukov; Dan L. Sackett

Regulation of mitochondrial outer membrane (MOM) permeability has dual importance: in normal metabolite and energy exchange between mitochondria and cytoplasm and thus in control of respiration, and in apoptosis by release of apoptogenic factors into the cytosol. However, the mechanism of this regulation, dependent on the voltage-dependent anion channel (VDAC), the major channel of MOM, remains controversial. A long-standing puzzle is that in permeabilized cells, adenine nucleotide translocase (ANT) is less accessible to cytosolic ADP than in isolated mitochondria. We solve this puzzle by finding a missing player in the regulation of MOM permeability: the cytoskeletal protein tubulin. We show that nanomolar concentrations of dimeric tubulin induce voltage-sensitive reversible closure of VDAC reconstituted into planar phospholipid membranes. Tubulin strikingly increases VDAC voltage sensitivity and at physiological salt conditions could induce VDAC closure at <10 mV transmembrane potentials. Experiments with isolated mitochondria confirm these findings. Tubulin added to isolated mitochondria decreases ADP availability to ANT, partially restoring the low MOM permeability (high apparent Km for ADP) found in permeabilized cells. Our findings suggest a previously unknown mechanism of regulation of mitochondrial energetics, governed by VDAC and tubulin at the mitochondria–cytosol interface. This tubulin–VDAC interaction requires tubulin anionic C-terminal tail (CTT) peptides. The significance of this interaction may be reflected in the evolutionary conservation of length and anionic charge in CTT throughout eukaryotes, despite wide changes in the exact sequence. Additionally, tubulins that have lost significant length or anionic character are only found in cells that do not have mitochondria.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Designed to penetrate: Time-resolved interaction of single antibiotic molecules with bacterial pores

Ekaterina M. Nestorovich; Christophe Danelon; Mathias Winterhalter; Sergey M. Bezrukov

Membrane permeability barriers are among the factors contributing to the intrinsic resistance of bacteria to antibiotics. We have been able to resolve single ampicillin molecules moving through a channel of the general bacterial porin, OmpF (outer membrane protein F), believed to be the principal pathway for the β-lactam antibiotics. With ion channel reconstitution and high-resolution conductance recording, we find that ampicillin and several other efficient penicillins and cephalosporins strongly interact with the residues of the constriction zone of the OmpF channel. Therefore, we hypothesize that, in analogy to substrate-specific channels that evolved to bind certain metabolite molecules, antibiotics have “evolved” to be channel-specific. Molecular modeling suggests that the charge distribution of the ampicillin molecule complements the charge distribution at the narrowest part of the bacterial porin. Interaction of these charges creates a region of attraction inside the channel that facilitates drug translocation through the constriction zone and results in higher permeability rates.


Current Opinion in Colloid and Interface Science | 2000

Functional consequences of lipid packing stress

Sergey M. Bezrukov

Abstract When two monolayers of a non-lamellar lipid are brought together to form a planar bilayer membrane, the resulting structure is under elastic stress. This stress changes the membrane’s physical properties and manifests itself in at least two biologically relevant functional aspects. First, by modifying the energetics of hydrophobic inclusions, it influences protein–lipid interactions. The immediate consequences are seen in several effects that include changes in conformational equilibrium between different functional forms of integral proteins and peptides, membrane-induced interactions between proteins, and partitioning of proteins between different membranes and between the bulk and the membrane. Secondly, by changing the energetics of spontaneous formation of non-lamellar local structures, lipid packing stress influences membrane stability and fusion.


Biophysical Journal | 2003

Residue Ionization and Ion Transport through OmpF Channels

Ekaterina M. Nestorovich; Tatiana K. Rostovtseva; Sergey M. Bezrukov

Single trimeric channels of the general bacterial porin, OmpF, were reconstituted into planar lipid membranes and their conductance, selectivity, and open-channel noise were studied over a wide range of proton concentrations. From pH 1 to pH 12, channel transport properties displayed three characteristic regimes. First, in acidic solutions, channel conductance is a strong function of pH; it increases by approximately threefold as the proton concentration decreases from pH 1 to pH 5. This rise in conductance is accompanied by a sharp increase in cation transport number and by pronounced open-channel low-frequency current noise with a peak at approximately pH 2.5. Random stepwise transients with amplitudes at approximately 1/5 of the monomer conductance are major contributors to this noise. Second, over the middle range (pH 5/pH 9), channel conductance and selectivity stay virtually constant; open channel noise is at its minimum. Third, over the basic range (pH 9/pH 12), channel conductance and cation selectivity start to grow again with an onset of a higher frequency open-channel noise. We attribute these effects to the reversible protonation of channel residues whose pH-dependent charge influences transport by direct interactions with ions passing through the channel.


Journal of Biological Chemistry | 2006

Voltage Gating of VDAC Is Regulated by Nonlamellar Lipids of Mitochondrial Membranes

Tatiana K. Rostovtseva; Namdar Kazemi; Michael Weinrich; Sergey M. Bezrukov

Evidence is accumulating that lipids play important roles in permeabilization of the mitochondria outer membrane (MOM) at the early stage of apoptosis. Lamellar phosphatidylcholine (PC) and nonlamellar phosphatidylethanolamine (PE) lipids are the major membrane components of the MOM. Cardiolipin (CL), the characteristic lipid from the mitochondrial inner membrane, is another nonlamellar lipid recently shown to play a role in MOM permeabilization. We investigate the effect of these three key lipids on the gating properties of the voltage-dependent anion channel (VDAC), the major channel in MOM. We find that PE induces voltage asymmetry in VDAC current-voltage characteristics by promoting channel closure at cis negative applied potentials. Significant asymmetry is also induced by CL. The observed differences in VDAC behavior in PC and PE membranes cannot be explained by differences in the insertion orientation of VDAC in these membranes. Rather, it is clear that the two nonlamellar lipids affect VDAC gating. Using gramicidin A channels as a tool to probe bilayer mechanics, we show that VDAC channels are much more sensitive to the presence of CL than could be expected from the experiments with gramicidin channels. We suggest that this is due to the preferential insertion of VDAC into CL-rich domains. We propose that the specific lipid composition of the mitochondria outer membrane and/or of contact sites might influence MOM permeability by regulating VDAC gating.


Journal of Biological Chemistry | 2013

Voltage-dependent Anion Channels Modulate Mitochondrial Metabolism in Cancer Cells REGULATION BY FREE TUBULIN AND ERASTIN

Eduardo N. Maldonado; Kely L. Sheldon; David N. DeHart; Jyoti Patnaik; Yefim Manevich; Danyelle M. Townsend; Sergey M. Bezrukov; Tatiana K. Rostovtseva; John J. Lemasters

Background: Metabolites generating mitochondrial membrane potential (ΔΨ) enter through voltage-dependent anion channels (VDAC). Results: VDAC3 contributed to ΔΨ formation more than VDAC1/2. VDAC3 knockdown decreased ATP and NADH/NAD+. Tubulin decreased VDAC1/2 not VDAC3 conductance, an effect antagonized by erastin. Conclusion: Tubulin negatively modulates mitochondrial metabolism by closing VDAC1/2. Significance: Antagonism of tubulin-dependent VDAC closure reverses mitochondrial suppression in Warburg metabolism. Respiratory substrates and adenine nucleotides cross the mitochondrial outer membrane through the voltage-dependent anion channel (VDAC), comprising three isoforms — VDAC1, 2, and 3. We characterized the role of individual isoforms in mitochondrial metabolism by HepG2 human hepatoma cells using siRNA. With VDAC3 to the greatest extent, all VDAC isoforms contributed to the maintenance of mitochondrial membrane potential, but only VDAC3 knockdown decreased ATP, ADP, NAD(P)H, and mitochondrial redox state. Cells expressing predominantly VDAC3 were least sensitive to depolarization induced by increased free tubulin. In planar lipid bilayers, free tubulin inhibited VDAC1 and VDAC2 but not VDAC3. Erastin, a compound that interacts with VDAC, blocked and reversed mitochondrial depolarization after microtubule destabilizers in intact cells and antagonized tubulin-induced VDAC blockage in planar bilayers. In conclusion, free tubulin inhibits VDAC1/2 and limits mitochondrial metabolism in HepG2 cells, contributing to the Warburg phenomenon. Reversal of tubulin-VDAC interaction by erastin antagonizes Warburg metabolism and restores oxidative mitochondrial metabolism.


European Biophysics Journal | 1997

The charge state of an ion channel controls neutral polymer entry into its pore

Sergey M. Bezrukov; John J. Kasianowicz

Abstract Electrostatic potentials created by fixed or induced charges regulate many cellular phenomena including the rate of ion transport through proteinaceous ion channels. Nanometer-scale pores of these channels also play a critical role in the transport of charged and neutral macromolecules. We demonstrate here that, surprisingly, changing the charge state of a channel markedly alters the ability of nonelectrolyte polymers to enter the channels pore. Specifically, we show that the partitioning of differently-sized linear nonelectrolyte polymers of ethylene glycol into the Staphylococcus aureus α-hemolysin channel is altered by the solution pH. Protonating some of the channel side chains decreases the characteristic polymer size (molecular weight) that can enter the pore by ∼25% but increases the ionic current by ∼15%. Thus, the “steric” and “electric” size of the channel change in opposite directions. The results suggest that effects due to polymer and channel hydration are crucial for polymer transport through such pores.


Biophysical Journal | 2002

Dynamics of Nucleotides in VDAC Channels: Structure-Specific Noise Generation

Tatiana K. Rostovtseva; Alexander Komarov; Sergey M. Bezrukov; Marco Colombini

Nucleotide penetration into the voltage-dependent mitochondrial ion channel (VDAC) reduces single-channel conductance and generates excess current noise through a fully open channel. VDAC channels were reconstituted into planar phospholipid membranes bathed in 1.0 M NaCl. At a given nucleotide concentration, the average decrease in small-ion channel conductance induced by mononucleotides ATP, ADP, AMP, and UTP and dinucleotides beta- and alpha-NADH, NAD, and NADPH are very close. However, the excess current noise is about seven times higher in the presence of NADPH than in the presence of ATP and is about 40 times higher than in the presence of UTP. The nucleotide-generated low-frequency noise obeys the following sequence: beta-NADPH > beta-NADH = alpha-NADH > ATP > ADP > beta-NAD > or = AMP > UTP. Measurements of bulk-phase diffusion coefficients and of the effective charge of the nucleotides in 1.0 M NaCl suggest that differences in size and charge cannot be the major factors responsible for the ability to generate current noise. Thus, although the ability of nucleotides to partition into the channels pore, as assessed by the reduction in conductance, is very similar, the ability to generate current noise involves a detailed recognition of the three-dimensional structure of the nucleotide by the VDAC channel. A possible mechanism for this selectivity is two noise-generating processes operating in parallel.


Journal of Chemical Physics | 2002

Channel-facilitated membrane transport: Transit probability and interaction with the channel

Mark A. Pustovoit; Sergey M. Bezrukov

Transport of metabolites between cells and between subcellular compartments is facilitated by special protein channels that form aqueous pores traversing biological membranes. Accumulating evidence demonstrates that solute-specific channels display pronounced binding to the corresponding solutes. In this paper we rationalize this observation by showing that a wide and deep potential well inside the channel is able to greatly increase the transit probability of the particle through the channel. Using a one-dimensional diffusion model with radiation boundary conditions, we give exact analytical expressions for the particle translocation probabilities. We also run Brownian dynamics simulations to verify the model and the quantitative predictions of our theory.


Biophysical Journal | 1998

Cluster Organization of Ion Channels Formed by the Antibiotic Syringomycin E in Bilayer Lipid Membranes

Yuri A. Kaulin; Ludmila V. Schagina; Sergey M. Bezrukov; V. V. Malev; Alexander M. Feigin; Jon Y. Takemoto; John H. Teeter; Joseph G. Brand

The cyclic lipodepsipeptide, syringomycin E, when incorporated into planar lipid bilayer membranes, forms two types of channels (small and large) that are different in conductance by a factor of sixfold. To discriminate between a cluster organization-type channel structure and other possible different structures for the two channel types, their ionic selectivity and pore size were determined. Pore size was assessed using water-soluble polymers. Ion selectivity was found to be essentially the same for both the small and large channels. Their reversal (zero current) potentials with the sign corresponding to anionic selectivity did not differ by more than 3 mV at a twofold electrolyte gradient across the bilayer. Reduction in the single-channel conductance induced by poly(ethylene glycol)s of different molecular weights demonstrated that the aqueous pore sizes of the small and large channels did not differ by more than 2% and were close to 1 nm. Based on their virtually identical selectivity and size, we conclude that large syringomycin E channels are clusters of small ones exhibiting synchronous opening and closing.

Collaboration


Dive into the Sergey M. Bezrukov's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip A. Gurnev

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Ekaterina M. Nestorovich

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

David P. Hoogerheide

National Institute of Standards and Technology

View shared research outputs
Top Co-Authors

Avatar

Igor Vodyanoy

Office of Naval Research

View shared research outputs
Top Co-Authors

Avatar

V. Adrian Parsegian

University of Massachusetts Amherst

View shared research outputs
Top Co-Authors

Avatar

Daniel Jacobs

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Joshua Zimmerberg

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Leonardo Dagdug

Center for Information Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge